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Quantum Condensed Matter Physics: synopsis (1)
1. Classical and Semi-classical  models for electrons in solids (3L)
Lorentz dipole oscillator, optical properties of insulators. Drude model and optical 
properties of metals, plasma oscillations. Semi-classical approach to electron 
transport in electric and magnetic fields, the Hall effect. Sommerfeld model, density 
of states, specific heat of; electrons in metals, liquid 3He/4He mixtures. Screening 
and the Thomas-Fermi approximation. 

2. Electrons and phonons in periodic solids (6L)
Types of bonding; Van der Waals, ionic, covalent. Crystal structures. Reciprocal 
space, x-ray diffraction and Brillouin zones. Lattice dynamics and phonons; 1D 
monoatomic and diatomic chains, 3D crystals. Heat capacity due to lattice 
vibrations; Einstein and Debye models. Thermal conductivity of insulators. Electrons 
in a periodic potential; Bloch’s theorem. Nearly free electron approximation; plane 
waves and bandgaps. Tight binding approximation; linear combination of atomic 
orbitals, linear chain and three dimensions, two bands. Pseudopotentials. Band 
structure of real materials; properties of  metals (aluminium and copper) and 
semiconductors.

Semi-classical model of electron dynamics in bands; Bloch oscillations, effective 
mass, density of states, electrons and holes in semiconductors
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Quantum Condensed Matter Physics: synopsis (2)

3. Experimental probes of band structure (4L)
Photon absorption; transition rates, experimental arrangement for absorption 
spectroscopy, direct and indirect semiconductors, excitons. Quantum oscillations; 
de Haas-Van Alphen effect in copper and strontium ruthenate. Photoemission; angle 
resolved photoemission spectroscopy (ARPES) in GaAs and strontium ruthenate. 
Tunnelling; scanning tunnelling microscopy. Cyclotron resonance.

Scattering in metals; Wiedemann-Franz law, theory of electrical and thermal 
transport, Matthiessen’s rule, emission and absorption of phonons. Experiments 
demonstrating electron-phonon and electron–electron scattering at low 
temperatures.
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Quantum Condensed Matter Physics: synopsis (3)

4. Semiconductors and semiconductor devices (5L)
Intrinsic semiconductors, law of mass action, doping in semiconductors, impurity 
ionisation, variation of carrier concentration and mobility with temperature - impurity 
and phonon scattering, Hall effect with two carrier types. 

Metal to semiconductor contact. P-n junction; charge redistribution, band bending 
and equilibrium, balance of currents, voltage bias. Light emitting diodes; GaN, 
organic.

Photovoltaic solar cell; Shockley-Queisser limit, efficiencies, commercialisation. Field 
effect transistor; JFET, MOSFET. Microelectronics and the integrated circuit. 

Band structure engineering; electron beam lithography, molecular beam epitaxy. 
Two-dimensional electron gas, Shubnikov-de Haas oscillations, quantum Hall effect, 
conductance quantisation in 1D. Single electron pumping and current quantisation, 
single and entangled-photon emission, quantum cascade laser.
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Quantum Condensed Matter Physics: synopsis (4)
5. Electronic instabilities (2L)
The Peierls transition, charge density waves, magnetism, local magnetic moments, 
Curie Law. Types of magnetic interactions; direct exchange, Heisenberg 
hamiltonian, superexchange and insulating ferromagnets, band magnetism in 
metals, local moment magnetism in metals, indirect exchange, magnetic order and 
the Weiss exchange field.

6. Fermi Liquids (2L)
Fermi liquid theory; the problem with the Fermi gas. Liquid Helium; specific heat 
and viscosity. Collective excitations, adiabatic continuity, total energy expansion for 
Landau Fermi liquid, energy dependence of quasiparticle scattering rate.

Quasiparticles and holes near the Fermi surface, quasiparticle spectral function, 
tuning of the quasiparticle interaction, heavy fermions, renormalised band picture 
for heavy fermions, quasiparticles detected by dHvA, tuning the quasiparticle 
interaction. CePd2Si2 ; heavy-fermion magnet to unconventional superconductor 
phase transitions.

•Course material will be useful for several part III courses.
•Printed overheads & problem sheets provided.
•All available in pdf on web: http://www.sp.phy.cam.ac.uk/drp2/home
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Books

1. Band Theory and Electronic Properties of Solids,  
Singleton J (OUP 2008)

2. Optical properties of Solids, Fox M                         
(2nd edn OUP 2010)

3. The Oxford Solid State Basics, Simon S H       
(OUP  2013)

4. Introduction to Solid State Physics, Kittel C           
(8th edn Wiley 1996)

5. Solid State Physics, Ashcroft N W and Mermin N D, 
(Holt, Rinehart and Winston 1976)
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Quantum Condensed Matter Physics

1. Classical and Semi-classical  models for electrons in solids (3L)
Lorentz dipole oscillator, optical properties of insulators. Drude model 
and optical properties of metals, plasma oscillations. Semi-classical 
approach to electron transport in electric and magnetic fields, the Hall 
effect. Sommerfeld model, density of states, specific heat of; electrons 
in metals, liquid 3He/4He mixtures. Screening and the Thomas-Fermi 
approximation. 
2. Electrons and phonons in periodic solids (6L)
3. Experimental probes of band structure (4L)
4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)
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Optical properties of insulators 
• Response to high frequency electric field in electromagnetic waves.

• Wavelength long compared to interatomic spacing.

• Classical  picture – Lorentz dipole oscillator model

• Model atoms as nucleus + electron cloud. 

• Applied electric field causes displacement of electron cloud, 

• Assume restoring force is proportional to displacement. 

No EM wave

electron cloud

nucleus

EM wave – electron cloud 
oscillates about nucleus 
displacement u.

+u
-u

1
2

t
f

=0t =



• Electron cloud behaves as damped harmonic oscillator

• ωT natural frequency, determined by force constant and mass;  γ damping 
rate (no model for this yet…) 

• Consider oscillating electric field                         , which induces oscillating 
displacement                            

• Resulting dipole moment per atom at angular frequency ωT :  
• Polarisation = dipole moment per unit volume                         

• From                        and the equation of motion we obtain for the 
polarisability: 

• Frequency dependence of 𝜒𝜒𝜔𝜔 typical of harmonic oscillator
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Optical properties of insulators
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• Explains why different materials have very different static permittivities
• Reflectivity between media  of different permittivities:                 , 
• Power reflection coefficient given by:
• In a solid polarization fields of other atoms can alter resonant  frequency

Optical properties of insulators
• Permittivity from model:
• Figure shows typical 

frequency dependence
• Analogy with damped SHO 

tells us that power absorbed 
by electron cloud is 
determined by )Im(𝜖𝜖𝜔𝜔 :

• Simple way to think of 
absorption lines in optical 
spectra

• At low frequencies:
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• Absorption coefficient    and 
refractive index    of sodium 
gas

• Atom density is 
• is the off resonance 

refractive index
• Absorption due strongest 

hyperfine component of the 
D2 line at                            
so

• Linewidth                         
hence

• Very narrow…..     

QCMP Lent/Easter 2021 1.11

α
n

7 31 10 m−×

Example – atomic absorption line

Taken from Optical properties of solids  by M Fox

0n

589nmλ =
145.1 10 Hzν = ×
100MHzν∆ ≈

7/ 2 10ν ν −∆ = ×



Lorentz oscillator model: connection to quantum mechanics
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• This classical oscillator model cannot be the whole story – works as a 
phenomenological description of optical response function

• For two sharp levels, from time-
dependent perturbation theory

• Where the imaginary part is the 
transition rate

• This can also be written

where    is very small

1
2b aE E iω ω γχ − − − /∝

 

γ

• As energy levels broaden into bands and    increases, this expression 
becomes similar to Lorentz model close to resonance where

• We multiply by               on top and bottom and approximate:                            
hence: 
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• Lorentz oscillator model, superposition of spectra 
• May have a number of allowed transitions at energies
• Usually high frequency – terahertz to ultraviolet 
• Resulting frequency-dependent permittivity from adding responses 

associated with each transition:  
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Optical properties of insulators

1 2
......T Tω ω 

( ) 1 ( )iω χ ω= +∑

Pe
rm

itt
iv

ity



QCMP Lent/Easter 2021

Optical properties of insulators – comparison with 
experiments
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For weakly 
absorbing 
medium with 

• Fused silica glass SiO2
• Expected general 

characteristics observed
• Transparent in visible light
• Strong absorption peaks in 

infrared and ultraviolet
• IR peaks due to vibrations of 

SiO2 molecules
• UV  absorption background 

across 10eV bandgap
• UV absorption peaks caused 

by inner core electron 
transitions in Si and O Visible

light

Infra-red Ultra-
violet X-rays

n κ
Optical properties of Solids, M Fox 1.14



• Temporal broadening of pulse of spectral
width       in a dispersive medium length

• Lorentz model gives                          above one 
absorption line and                         below next 
absorption line                                             

• Choosing                          we minimise dispersion 
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Optical properties of Solids, M Fox 
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• SiO2 refractive index in more detail
• n increases with frequency – ‘normal 

dispersion’ caused by tails of 
absorption peaks in IR and UV

• Can be used to separate colours of 
light using a prism

• Short light pulses of duration     have 
spread of frequencies

• Different velocities of frequency 
components causes problems  in high 
speed optical fibre communications

1.3 mλ µ• For SiO2 this is at                     – a preferred optical fibre wavelength
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Drude Model

• Assume we have a gas of 
electrons free to move between 
positive ion cores

• These electrons are only scattered 
by the ion cores

• Between collisions with the ion 
cores the electrons do not interact 
with each other.

• Collisions are instantaneous 
resulting  in a change of electron 
velocity. 

• The probability an electron has a 
collision in unit time is      , the 
scattering rate. 

• Electrons achieve thermal 
equilibrium with their surroundings 
only through collisions.
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1τ −
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Drude Model - relaxation time approximation

• The current density  J due to electrons of number density n, mass m,  of 
average velocity v and momentum p is given by:

• Consider the evolution of p in time      under the action of an external 
force

• Probability of a collision during      is            where     is the average time 
between collisions. 

• Probability of no collision during       is
• For electrons that have not collided momentum increases:

• So the contribution to the average momentum during      for electrons that 
have not collided is:
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Drude Model - relaxation time approximation
• Electrons which have collided are a fraction              of the total.
• The momentum they will have acquired since colliding (where their 

momentum was randomised) is
• So contribution to average momentum for electrons which have collided is 

of order           - small
• For momentum as before:

• If                  we can rearrange this to give

• Hence the collisions produce frictional damping.
• Apply to electrical conductivity       defined by               , assume  steady 

state so:                and the force on an electron is  
• From above
• Hence
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Summary of Lecture 1

• Introduction to course and recommended text books
• Lorentz oscillator model for optical absorption in solids
• Comparison with atomic absorption
• Comparison of Lorentz model with experimental results
• The Drude model of electron motion in solids
• The relaxation time approximation, scattering and electrical 

conductivity
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Quantum Condensed Matter Physics
Lecture 1

The End
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Quantum Condensed Matter Physics

1. Classical and Semi-classical  models for electrons in solids (3L)
Lorentz dipole oscillator, optical properties of insulators. Drude model 
and optical properties of metals, plasma oscillations. Semi-classical 
approach to electron transport in electric and magnetic fields, the Hall 
effect. Sommerfeld model, density of states, specific heat of; electrons 
in metals, liquid 3He/4He mixtures. Screening and the Thomas-Fermi 
approximation. 
2. Electrons and phonons in periodic solids (6L)
3. Experimental probes of band structure (4L)
4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)



Drude model

• From above:                                      

• In magnetic and electric fields:                              and
• Hence the same equation in different forms:
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Drude model: Frequency dependant conductivity

• From above

• If B=0:                                       and if

• Then

• And given              we have

• Where                      defines the Plasma frequency.

• At low frequencies                we get

• Where      is defined as the carrier mobility                                                        
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Optical properties of metals: connection to ac 
conductivity

• Current density                (velocity x density x charge) 
• Polarisation                  Hence,             for the conduction electrons
• Adding in the polarisation of the core electrons as       - the background 

polarisability we get:
• At angular frequency ω, substituting: 

• We get
• Hence

• This relates the imaginary part of the permittivity to the real part of the 
frequency dependant conductivity.

• Combining this with our expression                                       from above we 
obtain:  
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• Use Lorentz oscillator model for bound electrons giving background
• Use Drude model for conduction electrons, zero restoring force

• diverges as               so metals are highly reflecting at low frequency
• Peak in              at low ω, due to enhanced absorption,  ‘Drude peak’:
• crosses zero at       and approaches 1 at a high frequency so metals 

become transparent in the ultraviolet. 

Optical properties of metals
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Optical properties of metals
• Reflectivity at the interface between two media using the Drude model
• If permeability is unchanged at interface:  
• Power reflection coefficient 

• Plateau in R at low frequency, related to conductivity of material 
• at high frequency – blue line on figure
• If background permittivity       - due to polarisability of core electrons is 

significant, R can go to zero at finite frequency – red line
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Experimental reflectivity of Aluminium

• Experimental Reflectivity of 
Aluminium as a function of photon 
energy - green curve, (solid)

• Reflectivity above 80% for visible 
region of spectrum - aluminium 
coating is used for commercial 
mirrors

• Plasma frequency in ultra-violet
• Both theory curves assume we 

have
• Red (dashed) no damping
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Theory

Reflectivity of Aluminium

Data from Ehrenreich et al (1963)

• Blue (Dotted) with                            value deduced from DC conductivity 
values  - slightly better fit

• Two unexplained features in experimental results: (1) reflectivity is smaller 
than predicted (2) small dip in reflectivity around            

• Both explained by considering interband absorption rates 
1.5eV

15.8eVpω =

Optical properties of Solids, M Fox 



Optical properties of metals: plasma oscillations
• Part IB electromagnetism – “Plasma Oscillations”
• electrons moving in a positively charged environment - model for metal. 
• Consider probing a slab of material by applying an oscillating field D: 

• In metals                        and usually            so        peaks and   
• More generally as               at                      we get  Plasma Oscillations at a 

frequency defined by 
• Polarisation causes build-up of surface charge, which generates the 

restoring force driving the oscillations. The electrons slosh back and forth. 
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Optical properties of metals: plasma oscillations 
and electron energy loss spectroscopy in Ge and Si

• Incoming electron at 
wavevector 𝑞𝑞, energy ℏ𝜔𝜔. 
Outgoing electron at 
wavevector 𝑘𝑘, energy ℏ𝜈𝜈. 
Plasmon generated with 
energy ℏ 𝜔𝜔 − 𝜈𝜈

• Response to oscillating applied D field given by 

• Resonance at plasma frequency                          width  𝜏𝜏−1. 
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Transport in electric and magnetic fields

• Previously

• If B is parallel to z-axis, taking components

• Steady state              

• Hall effect: current confined to x-axis               by transverse field          due 
to charge build up.

• Hall coefficient                                gives carrier density and sign of charge

• If             then                                                             carrier ‘mobility’ 
• Mobility defined as velocity of charge carrier per unit electric field.
• since
• Cyclotron frequency defined as 
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Hall effect in metals
• First measured 1879 E H Hall
• From the last slide
• Drude theory predicts        is 

independent of      and     
• In metals however it is found that       

does vary with magnetic field as well 
as temperature and sample purity

• Measuring pure samples at low 
temperatures and high magnetic 
fields (1T) limiting values are 
obtained.

• Comparison made between observed   
and predicted number of free 
electrons per atom for a range of 
metals

• Theory seems to work quite well for 
alkali metals & noble metals but not 
for the others - new theories needed!
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B τ
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Metal Valence -1/Rhne
Li 1 0.8
Na 1 1.2
K 1 1.1
Cu 1 1.5
Ag 1 1.3
Au 1 1.5
Be 2 -0.2
Mg 2 -0.4
In 3 -0.3
Al 3 -0.3

0.01     0.1       1.0       10       100    1000

1/ hR ne−

Bωτ µ=

0.33−

aluminium
R Lück, Phys Stat. Sol. 18, 49(1966)



Scanning Hall Probe Microscopy
• First report Chang et al Appl Phys Lett 61, 1974 (1992)
• Hall sensor mounted on scanning system to measure local magnetic field
• Magnetic field sensitivity            spatial resolution  
• Now commercial product from Attocube, Nanomagnetics, Magcam……
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Problems with Drude Theory
• Drude model predicts the electronic head capacity to be from equipartition 

of energy                      independent of T.
• Measured heat capacity falls far below that expected from equipartition 

theorem  and is temperature dependent.                   

• Correct description: degenerate Fermi gas (cf. Stat. Phys. course). 
• Interpret velocity      in Drude model as drift velocity, averaged over many 

particles. Individual electrons actually travel at up to 1% of speed of light! 

QCMP Lent/Easter 2021  2.14

u

3
2 kel BC n=



Drude Model – is it valid?
• The Drude model is very crude (devised only 3 years after discovery of 

electron by J J Thomson in 1897!)
– assumes electrons have random (or 0) momentum after a collision
– assumes scatterers are all the positive ions (but mean free path can be 

much longer than atomic spacing)
– no concept of QM, Pauli exclusion principle, fermions, …

• We should instead consider a Fermi sphere of electrons occupying all 
the states in k-space up to the Fermi energy EF
– only two electrons in each state (two spins)
– only electrons near Fermi surface can gain energy or scatter
– Fermi-Dirac function gives probability of finding electron in a state
– distribution function   is modified by electric field, which provides 

momentum, so there are more electrons moving in one direction than in the 
opposite one
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Drude model – its replacement
• Describe using Boltzmann transport formalism

(Part III major option AQCMP)
– scattering causes total momentum to decay, same results

• Various types of scattering in metals (and semiconductors):
– phonons (dominate at room temperature T)
– impurities and lattice defects (important at low T)
– other electrons (surprisingly unimportant; total momentum 

conserved so no effect on current)
– we will see that the ions themselves have no effect provided that 

they are in a periodic lattice (band structure)
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Summary of Lecture 2

• The Drude model – frequency dependant conductivity
• Optical properties of metals
• Experimental reflectivity of aluminium
• Plasma oscillations, electron energy loss spectroscopy
• Hall effect from Drude model
• Hall effect in metals
• Applications of Hall effect – scanning Hall probe microscopy
• Problems with Drude theory
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Quantum Condensed Matter Physics
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QCMP Lent/Easter 2021 3.2

Quantum Condensed Matter Physics

1. Classical and Semi-classical  models for electrons in solids (3L)
Lorentz dipole oscillator, optical properties of insulators. Drude model 
and optical properties of metals, plasma oscillations. Semi-classical 
approach to electron transport in electric and magnetic fields, the Hall 
effect. Sommerfeld model, density of states, specific heat of; electrons 
in metals, liquid 3He/4He mixtures. Screening and the Thomas-Fermi 
approximation. 
2. Electrons and phonons in periodic solids (6L)
3. Experimental probes of band structure (4L)
4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)



Sommerfeld Model – density of states
• Free electron gas - Schrodinger equation:
• Introduce eigenstates                                                       

satisfying periodic boundary conditions                                               etc.
• Allowed values of momentum are discrete:                                where  
𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧 are positive or negative integers                                       
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• At zero temperature 
fill up Fermi sphere 
to the Fermi energy    

• Each triplet of 
quantum numbers 
corresponds to 2 
states – electron 
spin degeneracy

• volume in k-space

FE
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Sommerfeld Model – density of states
• Number of occupied states in Fermi sphere:

• Hence if                                      then
• Also

• Density of states 

• Hence

• Factor of 2 for spin degeneracy

• Often            is given per unit volume so V disappears.              
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Sommerfeld Model – electronic specific heat
• Occupancy of states in thermal equilibrium – Fermi distribution:

• Chemical potential
• Number density of particles
• Energy density
• At room temperature                           For metals           a few eV hence

• From above

• Since the Fermi function is a step function             is sharply peaked at the 
chemical potential

• Contributions to the specific heat only come from states within        of the 
chemical potential, with each state having specific heat      and we can 
guess that  
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Sommerfeld Model – electronic specific heat
• To calculate this more accurately…. We take the density of 

states as a constant so

• changing variables

• The number of particles is conserved so

• The first term in the square brackets is odd,             is even  so
• To the same level of accuracy: 
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Sommerfeld Model – electronic specific heat

• Since                          we can write

• This result is of the same form as the equation above obtained from a 
simple argument but with a different prefactor - as opposed to 1.

• This calculation is the leading order term in an expansion in powers of                     
.

• To next order the chemical potential is temperature dependent (see below) 
but because for metals                     we can usually ignore it.

• Examples: 
• Electron gas in solids – often much smaller than lattice specific heat
• Liquid helium mixtures of 3He in 4He – near ideal Fermi gas
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Specific Heat of mixtures of 3He and 4He

QCMP Lent/Easter 2021 3.8

Helium dilution 
refrigerator

5mK

50mK

1.5K

0.7K

4K
• Experimental procedure: 
• Cool helium mixtures to mK temperatures, 
• Isolate from surroundings
• Input heat for given time
• Measure temperature rise
• Calculate specific heat at particular   

temperatures and pressures

Polturak and Rosenbaum JLTP, 43, 477 (1981) 

From wikipedia



Specific heat of mixtures of liquid  3He and 4He

3.9

( )
2 2 2/32, 3

2 2
F

v B F
F B B

ETc nk T n
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π π= = =


, ,vc T n FT

FT T

• From above

• Linear behaviour in Fermi gas regime 

• So knowing                we can calculate        the Fermi temperature 
and      the effective mass

• Effective mass 2.44 to 3.07 time bare 3He mass – due to interactions  
m

Polturak and Rosenbaum JLTP, 43, 477 (1981) QCMP Lent/Easter 2021



Screening and Thomas-Fermi approximation
• Placing a positive charge in a metal will result in electrons moving around 

to screen its potential resulting in zero electric field.
• This is quite different from a dielectric where electrons are not able to 

move freely and the potential is reduced by dielectric constant
• In a classical picture electrons can move anywhere, but quantum 

mechanics dictates this is not possible - an electron cannot sit right on top 
of a nucleus.

• In metals a balance is reached between minimising potential and kinetic 
energy, screening over a short but finite distance.

• We estimate the response of a free electron gas to a perturbing potential. 
)𝑉𝑉0(𝐫𝐫 is the electrostatic potential, )𝜌𝜌0(𝐫𝐫 the charge distribution.

• Consider the positive background charge to be homogeneous with the 
electron gas moving around - plasma or “Jellium” model and in this case 

)𝜌𝜌0(𝐫𝐫 = 0 everywhere (this does not include the charges used to set up the 
perturbing potential).
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Screening and Thomas-Fermi approximation

• In the presence of a perturbing potential            the electron charge 
density redistributes                                     which changes the potential                                       
,                                    . The changes are related by:
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• We link the charge redistribution to 
the applied potential by assuming the 
perturbing potential shifts free 
electron energy levels – the same as 
assuming a spatially varying Fermi 
energy. This is the “Thomas-Fermi” 
approximation.

• The potential is the total produced by 
the added external charge and the 
induced “screening” charge                                     
,                           hence:

( )δρ r

tot extV V Vδ= +

( ) ( ) ( )0V V Vδ= +r r r



Screening and the Thomas-Fermi approximation
• Assume the induced potential is slowly varying on the scale of the 

Fermi wavelength              so the energy eigenvalues are just shifted 
by potential as a function of position:

where               has a free electron parabolic  dispersion
• Keeping the electron states filled up to a constant energy     means we 

adjust the local Fermi energy              as measured from the bottom of 
the band so: 
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2 Fkπ /

µ
( )FE r

( ) ( )F totE eVµ = −r r
• A small shift in the local Fermi 

Energy leads to a change in the 
local electron number density, n.

• And from above                           
so we have:

( ) ( )V F F V F totn g E E eg E Vδ δ= =
tot extV V Vδ= +

( )( )V F extn eg E V Vδ δ= +



Screening and the Thomas-Fermi approximation
• Since the added potential and induced electron number density are small 

we can use Poisson’s equation to write:

• We can calculate the induced potential and density response using Fourier 
transformation. Assume an oscillatory perturbing potential :                              
and a resulting oscillatory induced potential:                             substituting 
into the equation above:

• Where we define the Thomas–Fermi wavevector:
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Screening and the Thomas-Fermi approximation
• The Thomas-Fermi wavevector , and given that for 

the free electron gas:                                    

• We obtain: 

• where the Bohr radius is
and the Wigner-Seitz radius, rs is defined by

• To find the induced electron number density – from above we have
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The Thomas-Fermi dielectric function
• The wavevector dependent dielectric function         relates the electric 

displacement D to the electric field E by 
• given:

• Since from above

• Using

• And hence the “Thomas Fermi dielectric function” is given by:

• is the Thomas-Fermi screening length, for copper where the electron 
density                                   we have                                . 
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Thomas-Fermi screening
• From last slide
• For small    (long distances)
• Long range part of Coulomb potential 

also             so it is exactly cancelled
• In real space if                     (Coulombic 

and long range) then                             
is the short range screened potential.

2( ) 1 /TF 2
TFq q= +q 

2TF q−∝q

2q−∝
extV Q r= /

( ) ( ) TFq rV r Q r e−= /

(problem sheet 1 question 6)
• The screened potential is known as the “Yukawa potential” in particle physics
• Exponential factor reduces range of Coulomb potential – screened over 

distances comparable to inter-particle spacing
• Mobile electron gas highly effective at screening external charges.
• Application to resistivity of alloys – atoms of Zn (valency 2) added 

substitutionally to metallic copper, (valency 1) has an excess charge.
• Foreign atom scatters conduction electrons with interaction given by 

screened Coulomb potential – scattering contributes to increase in in 
resistivity, theory and experiment in agreement.
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Summary of Lecture 3

• The Sommerfeld model – electrons in a degenerate Fermi gas
• Free electron gas in three dimensions 
• Fermi surface and density of states
• Thermal properties of the Fermi gas – specific heat
• Experimental measurements of specific heat in liquid helium.
• Screening and the Thomas-Fermi approximation, 
• Thomas-Fermi wavevector and dielectric function
• Effect of screening on a Coulomb potential
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Quantum Condensed Matter Physics

1. Classical and Semi-classical  models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)
Types of bonding; Van der Waals, ionic, covalent. Crystal structures. 
Reciprocal space, x-ray diffraction and Brillouin zones. Lattice 
dynamics and phonons; 1D monoatomic and diatomic chains, 3D 
crystals. Heat capacity due to lattice vibrations; Einstein and Debye 
models. Thermal conductivity of insulators. Electrons in a periodic 
potential; Bloch’s theorem. Nearly free electron approximation; plane 
waves and bandgaps. Tight binding approximation; linear combination 
of atomic orbitals, linear chain and three dimensions, two bands. 
Pseudopotentials.. ……….

3. Experimental probes of band structure (4L)
4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)

4.2



From atoms to solids – the binding of crystals
• Cohesion due to interaction between electrons and nuclei giving rise to 

effective interaction potential between atoms
• Several different types of bonds – firstly Van der Waals
• Example: Inert gases – filled electron shells, large ionization energies
• Electron configuration in solid similar to that in separated atoms
• Atoms neutral – interaction weak, due to Van der Waals interaction
• Consider atom as oscillator – electrons fluctuate around nucleus
• Zero point fluctuations cause dipole moment    , a second atom at distance      

experiences induced  electric field          
• This field induces a dipole at the second atom                         where           

is the atomic polarizability
• The second atom induces an electric field at the first

• The energy of the system changes by:
• Induced interaction                    and is always attractive  
• Note - Energy depends on              and not                which is zero
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From atoms to solids – Van der Waals bonding
• If atoms move together so the electron charge distributions overlap they 

repel each other
• Repulsion due to electrostatic forces and the Pauli exclusion principle 

which prevents electrons having the same quantum numbers
• For example if we try to force 2 spin parallel electrons into the same 1s 

state in H, one will go into the 2s state at a large energy cost
• Calculations of repulsive interactions is complex                                              

there is a short range (hard core) potential
• Common empirical “Lennard-Jones” potential

• are constants depending on atoms involved
• Except He, Inert gases form close-packed face-centered cubic solids with 

high coordination nos. (10-12), low cohesive energies and melting points
• He is special – due to zero point motion does not solidify even at absolute 

zero, unless pressurised to 30 Bar!
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Van de Waals bonding  for low-dimensional 
structures
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From atoms to solids – Ionic bonding
• Atoms with electronic configuration close to a filled shell will tend to gain or 

lose electrons to fill the shell
• Energy for reaction                            in gas phase is ionization energy
• Energy for reaction                          in gas phase is electron affinity 
• To form ionic molecules it costs an energy            but the electrostatic 

potential energy between charges is reduced by a greater amount.  
• Electrostatic interaction for a diatomic crystal:  

• Where                                    is sum of all Coulomb energies between ions.  
• If the system is on a regular lattice with constant      then we can write: 

where the Madelung constant depends on structure NaCl
CsCl cubic ZnS or Zincblende

• We must add repulsive short range force, since ions are different sizes we 
get different energies - explains why NaCl has rocksalt structure and not 
CsCl structure

• Intermediate coordination numbers (6-8)
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Crystal structures
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From atoms to solids – Covalent bonding
• Consider covalent bonding in hydrogen molecule – due to electron pair
• Overlapping orbitals on neighbouring atoms hybridise
• Hamiltonian symmetric about  point between nuclei, hence eigenstates have 

odd or even parity about this point
• With a basis of atomic states                 where the nucleus is at  R we get  

two states, of odd and even parity

• is non zero and       has a node between  the nuclei 
• For an attractive potential we will have                  and the two electrons of 

opposite spin will fill the lower ‘bonding’ state       .
• The ‘anti-bonding’ state will be separated from the bonding state by an 

energy gap                         and will be unfilled

QCMP Lent/Easter 2021 4.8

( )φ −r R

( ) ( ) ( )rψ φ φ± = − ± −a br R r R
ψ+ ψ−

E E+ −<
ψ +

gE E E− += −

aR bR

( )Va r ( )Vb r

φa φb

E−

E+



From atoms to solids – Covalent bonding
• An example of degenerate perturbation theory
• We calculate single-electron energy levels, ignore electron-electron 

repulsion and use Dirac notation, so:

• Look for energy eigenfunction within subspace spanned by orthonormal 
basis functions:

• Apply Hamiltonian, and since        and        have the same eigenenergy:     

• Left multiply by         and         we obtain two equations:

• From this, given                   we can obtain an eigenvector equation for the 
coefficients          which only has a non trivial solution if the determinant is 
zero: 
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From atoms to solids – Covalent bonding

• From previous slide:

• From this we can find the energy eigenvalues which are distributed around 
the average of         and 

• For                                                 we get covalent bonding  

• If                       or                      then                 or                  and         is 
irrelevant  - we have ionic bonding

• See Problem Sheet 1 question 7
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Covalent and ionic semiconductors
• With s electrons molecules are formed 

which form a weakly bound molecular 
solid.

• With p and d orbitals, bonds become 
directional such as sp3 in C, Si and Ge

• These hybrids point in tetrahedral 
directions                                                
and each atom donates 1 electron

• This forms an open tetrahedral network 
– “diamond structure” 

(111),(111),(111),(111)

• In GaAs and cubic ZnS the total number of electrons satisfies “octet rule” 
• Same tetrahedral structure as diamond with alternating atoms - “zincblende” 
• Zincblende structure cohesion is partly covalent and partly ionic
• Hexagonal crystal structure based on local tetrahedral network  - “wurtzite”
• Wurtzite structure favoured in more ionic systems.
• With increasing ionicity we get : Group IV Ge (diamond), III-V GaAs (zincblende), 

II-VI ZnS (zincblende or wurtzite), II-VI CdS (wurtzite), I-VII NaCl (rocksalt)  

Tetrahedral bonding in diamond
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Metals
• Band forms from atomic states. Partially filled which 

implies energy gain generalisation of covalent bond 
to ‘giant molecule’ 

• Electrons in band states delocalised, high 
conductivity. Bonding is isotropic, like van der Waals. 

• Close packing. to maximise density while keeping 
atomic cores far apart: fcc or hcp. High coordination 
numbers  

• Screening by conduction electrons. Screening length 
of order atomic spacing

• Within a row in periodic table: ion core potential 
grows, density increases, crossover to covalent 
semiconductors, then insulating molecular structures. 

• Transition metals. d-electrons more localised, inside 
s- and p- orbitals. Are often spin-polarised hence  
magnetism in 3d elements. 4d and 5d orbitals 
overlap giving high binding energy (e.g. W melts at 
3700K).
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Crystal Lattices
• An ideal crystal is an infinite repetition of structural unit in space
• Repeating structure called the lattice
• Group of atoms which is repeated is called the basis
• The basis may be a single atom or very complex – such as a polymer

• Lattice is defined by primitive translation vectors:
• An arbitrary lattice translation is:
• The atomic arrangement looks the same from equivalent points in the unit 

cell:

• The lattice formed is called a Bravais lattice
QCMP Lent/Easter 2021 4.13

Lattice Basis Crystal

, 1 2 3i i = , ,a

integeri in n′ = + ∀∑ i
i

r r a

i ii
n=∑T a



Wigner-Seitz cell

• The region in space around a particular lattice point closer to it than any 
other lattice point

• To construct – draw lines from a given lattice point to all of its neighbours.
• Draw planes perpendicular with each line intersecting at the line midpoint.
• The smallest volume enclosed is the Wigner-Seitz primitive unit cell
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Space and point groups

• Symmetry operations which map lattice onto itself  Space group
• Map lattice onto itself, but keep one point fixed  Point group. 
• Point group operations: reflections, inversions, rotations 
• Seven point groups for Bravais lattices = Seven crystal systems  
• cubic, tetragonal, orthorhombic, monoclinic, triclinic, trigonal, hexagonal. 
• Fourteen space groups for Bravais lattices 
• General crystal structures (Bravais lattice + basis): 32 point groups, 230 

space groups. 
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The Bravais lattice types
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Index system for crystal planes

• Coordinates of three lattice points enough to define crystal plane
• Label plane by coordinates where it cuts axes.

• denotes plane which cuts axes at
or multiple thereof, so that  
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• e.g.          For a cubic crystal has  

equivalent symmetry planes:

• Note that overbar      denotes negation

( )hkl

{ }
{ }100

(100),(010),(010),
(100),(010),(001)

1
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Crystal plane indices

From Kittel
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Summary of Lecture 4

• The binding of crystals
• Van der Waals
• Ionic 
• Covalent 
• Metals
• Crystal lattices
• Wigner –Seitz cell
• Space and Point groups
• Index system for crystal planes
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Quantum Condensed Matter Physics
Lecture 4

The End
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