
NATURAL SCIENCES TRIPOS Part II

Monday 3 June 2019 9.00 to 11.00 am

PHYSICS (7)
PHYSICAL SCIENCES: HALF SUBJECT PHYSICS (7)

QUANTUM CONDENSED MATTER PHYSICS

Candidates o�ering this paper should attempt a total of five questions: three
questions from Section A and two questions from Section B.

The approximate number of marks allocated to each question or part of a
question is indicated in the right margin. This paper contains five sides,
including this coversheet, and is accompanied by a handbook giving
values of constants and containing mathematical formulae which you
may quote without proof.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
2 ⇥ 20 Page Answer Book
Metric graph paper
Rough workpad
Yellow master coversheet

Mathematical Formulae handbook
Approved calculator allowed

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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SECTION A
Attempt all questions in this Section. Answers should be concise and

relevant formulae may be assumed without proof.

1 State the form of the wavefunction for an electron in a crystal. What is meant by
the crystal momentum of the electron and how does it di�er from the true momentum of
the electron? [4]

2 Write down the form of the resulting potential V (r) at a distance r from an extra
fixed charge Q inserted into a conductor. Sketch, on the same graph, V (r) and the bare
potential from the same charge Q. Explain how the length scale of the variation of the
potential V (r) depends on a property of the conductor. [4]

3 Two sheets of monolayer graphene are laid flat, one on top of the other, with a small
angle between the corresponding in-plane crystal axes in the two layers. This produces
Moiré fringes, with periodicity 50a, where a = 0.25 nm is the period of the graphene
lattice. Consider, for simplicity, just a one-dimensional chain with these periodicities,
and assume a linear dispersion relation with group velocity v = 106 ms�1. Assuming
that the only perturbation felt by conduction electrons is from the weak lattice and
superlattice potentials, estimate the period in energy of the resulting energy spectrum. [4]
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SECTION B
Attempt two questions from this section

4 Discuss the behaviour of a free-electron gas in the presence of a weak periodic
potential, and indicate why this leads to the appearance of energy gaps at the
Brillouin-zone boundaries. [5]

A one-dimensional lattice, with period a, has a weak lattice potential V (x) given by

V (x) = �2V0 cos gx .

Here, g ⌘ 2⇡/a and V0 ⌧ ✏g/2, where ✏ k denotes the free-electron energy at wavevector
k. By using an approximate wavefunction of the form

 (x) = Aeik+x + Beik�x,

where k± = q± g/2 (with q ⌧ g/2), show that the energy E(q) is given approximately by

E(q) =
1
2


✏q+g/2 + ✏q�g/2 ±

⇣
(✏q+g/2 � ✏q�g/2)2 + 4V 2

0

⌘1/2�
.

[4]
By expanding E(q) in powers of q, show that the e�ective masses m⇤ at the

Brillouin-zone boundary are given by

m⇤

m
= ±

V0
2✏g/2

where m is the free-electron mass. [4]
Sketch typical phonon dispersion curves for acoustic and optical phonons. Use this

diagram to explain how the range of available phonon momenta depends on temperature
in the low-temperature regime.

A particular simple-cubic crystal has a lattice constant a = 0.5 nm, sound velocity
vs = 3 km s�1, and Fermi wavevector kF = 0.7⇡/a. Estimate the temperature above
which the low-temperature electrical conductivity might be expected to decrease
strongly, explaining your reasoning. [4]
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5 For a pure metal in a magnetic field B, the flux enclosed by the quantised motion
of a charge �e in the plane perpendicular to the magnetic field is

�n =

 
n +

1
2

!
h
e
,

where n is some integer and h is Planck’s constant. Explain this phenomenon and, by
considering the Lorentz force, find the area enclosed by the corresponding motion in
k-space. [6]

Explain why this result leads to oscillations in various properties of the material,
describing one of the observable e�ects. [3]

Figure 1: Four-terminal resistance of a 2D system.

A ‘Hall bar’ made from a di�erent material containing a high-mobility
two-dimensional electron system has the four-terminal resistance V/I shown in Figure 1
as a function of 1/B. Explain the origin of the peaks and why some of them split. [3]

Using the fact that each state in a given ‘level’ corresponds to a unit of flux h/e,
show that the number of occupied states per unit area is eB⌫/h, defining what the
number ⌫ represents. Find the 2D carrier density for this sample. [3]

Discuss why scattering (with characteristic time ⌧) and finite temperature T reduce
the amplitude of the resistance oscillations seen at large 1/B in the figure. Sketch the
Hall resistance vs B in such samples and describe what is seen at higher fields in the best
samples. [4]
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6 Show that the magnetisation of a paramagnetic insulator with n localised magnetic
ions per unit volume, each with total angular momentum J = �, is

M = nµB tanh
µBB
kBT

at temperature T in a magnetic field B. [4]
Show how this leads to Curie’s law � = C/T . [2]
Consider a ferromagnetic insulator where the e�ect of the surrounding ions is

approximated in the above model by an e�ective magnetic field of the form
BE = µ0HE = µ0�M (with � > 0). Show that, when there is no applied magnetic field,

m = tanh
m
t
,

where m = |M |/nµB and t is to be found. By sketching functions on a graph, find when
this has solutions with m > 0. [3]

Show that, for non-zero m ⌧ 1, m ⇡ t
p

3(1 � t) and sketch m against t for
�1 < 1 � t ⌧ 1. [4]

Explain the physical mechanisms giving rise to this e�ective field (HE), how it can
be represented by the Heisenberg Hamiltonian, and how this can describe
ferromagnetism or antiferromagnetism in various types of insulator. [6]
Note that tanh x = x � 1

3 x3 + O(x5) .
�

END OF PAPER
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