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Quantum Condensed Matter Physics

1. Classical and Semi-classical  models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)

………. Nearly free electron approximation; plane waves and 
bandgaps. Tight binding approximation; linear combination of atomic 
orbitals, linear chain and three dimensions, two bands. 
Pseudopotentials. Band structure of real materials; properties of  
metals (aluminium and copper) and semiconductors.

Semi-classical model of electron dynamics in bands; Bloch 
oscillations, effective mass, density of states, electrons and holes in 
semiconductors

3. Experimental probes of band structure (4L)
4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)
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Semiclassical model of electron dynamics
• We now discuss the dynamics of electrons in energy bands
• The bandstructure is dispersive so we should treat particles as wave-

packets, a superposition of different
• The band energy         is the frequency associated with the phase rotation of 

the wavefunction
• For the motion of a wave in a dispersive band we should use the group 

velocity                         which as a vector is
• Note that the effects of the lattice potential are contained in
• If a force is applied to a particle, the rate of doing work on that particle is 

given by 

• And introducing electric and magnetic fields 

• An electric field shifts the crystal momentum        in the direction of the field
• A magnetic field causes an electron to move in k-space in a plane 

perpendicular to the field on a path of constant energy 
• This is the basis of techniques to measure the Fermi surface of metals
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Semiclassical model of electron dynamics
• The diagram shows the energy,    group velocity                    

.                 and effective mass                                  
of an electron for a 1D band 

• Applying an electric field                                                                           
.  increases steadily with time throughout, initially 
its velocity increases as for a free electron.

• As the electron moves up the band                
decreases and the effective mass increases until 
the acceleration stops and the velocity is constant. 

• As                changes sign the effective mass 
becomes negative and the velocity starts to fall 
until it reaches zero at the zone boundary, 
becoming negative as it passes to the next zone

• As    increases further moving up and down the 
band structure, the velocity oscillates with time and 
the electron’s position oscillates with time

• So applying a DC voltage results in an AC current 
• No net current flows and we have an insulator!
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Bloch oscillations
• So far all attempts to observe Bloch oscillations in a crystal have failed.
• This is due to scattering off impurities and phonons in the solid as the 

momentum approaches          , however it is possible with artificial structures 
• Using alternating thin layers  of GaAs (9.7nm) and Al0.3Ga0.7As (1.7nm) 

repeated 35 times, an artificial periodic potential is created with a periodicity 
40 times longer than the atomic spacing, known as a superlattice.

• The momentum at the zone boundary for this superlattice is 40 times lower 
than in a crystal and the wavepacket does not need such large velocities.

• The diagram shows energy versus position of the conduction and valence 
bands of the superlattice
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• The tilting is produced by the applied 
electric field. The levels shown form a 
Wannier-Stark ladder for electron 
wavepackets made by excitation from 
the valence band in one quantum well, 
either vertically      or to neigh-
bouring or next-neighbouring    
.              wells of the electron lattice. 
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Bloch Oscillation measurements
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• Experiment used terahertz time 
domain spectroscopy

• A technique only sensitive to 
coherent emission processes

• Experimental setup to observe the 
dipole radiation from oscillating 
charge is shown in the figure 

• An unfocused optical femtosecond 
beam from a  Ti-sapphire laser with 
a pulse duration of            , strikes 
the sample at an angle of 45°

• The sample is held in a cryostat at 10 K. 
• Terahertz radiation, emitted collinearly with the reflected optical excitation 

beam leaves cryostat and is collected with a pair of off-axis paraboloid 
mirrors  and detected by a photoconductive dipole antenna

• This photoconductive dipole antenna is gated by a second, time-delayed 
portion of the femtosecond laser beam to measure electric field emitted 
from sample as a function of time on ps timescale.

H G Roskos et al Phys Rev Lett 68, 2216 (1992)100 fs
C Waschke at al Phys Rev Lett 70, 3319 (1993)



Bloch Oscillation measurements

• In the experiment, electron and 
hole pairs are excited optically by a               
.          pulsed laser with energy just 
above the band gap of GaAs

• The coherent terahertz radiation is 
measured as a function of time (left 
panel) for different DC electrical 
biases, more oscillations are seen 
as the bias becomes more negative 

• The spectral content is determined 
by taking a Fourier transform of the 
results (right panel)

• The frequency of the Bloch 
oscillation peak increases as the 
bias becomes more negative than  
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Density of states – energy bands

• Earlier in the course we discussed the density of states of a free electron 
gas.

• The maxima        and minima        of all bands have a locally quadratic 
dispersion  with respect to momentum measured from the maxima or minima

• We can define the effective masses with     referring to Cartesian 
coordinates

• The 3D density of states near the minimum is given by 

• The bare mass has been replaced by an effective mass                          
which averages the curvature of the bands in 3D

• A similar form applies near the band maxima with
• The flatter the band the higher the effective mass and the larger the density 

of states
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Density of states
• For any form of           the density of states is given by

• Because of the    function  the momentum integral is over a surface in k-
space     which depends on the energy    , e.g.                is the Fermi surface 

• We can separate the integral into a 2D surface integral along a contour of 
constant energy and an integral perpendicular to this surface        , hence

given
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becomes zero at the edges of the bands and the saddle points which can 
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Density of states
• Maxima, minima, and saddle points are all 

generically described by dispersion 
(measured relative to the stationary point) of 

• If all the signs are positive, this is a band 
minimum; if all negative, a band maximum; 
when the signs are mixed there is a saddle 
point. 

• In the vicinity of each of these critical points, 
(van Hove singularities) the density of states 
or its derivative is singular. In two dimensions, 
a saddle point gives rise to a logarithmically 
singular density of states, whereas in three 
dimensions there is a discontinuity in the 
derivative. 
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• Examples of the generic behaviour of the density of states in 1D,2D and 3D 
are shown in the figure



Electrons and holes in semiconductors

• Consider what happens if we move an 
electron from the valence band to the 
conduction band by absorption of a photon 

• This creates an electron hole-pair
• For typical values of energy the photon 

momentum is very small compared to the 
electron momentum and it adds negligible 
momentum to the system

• Hence the hole momentum is the negative of 
the momentum of the empty electron state 
so 
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• Filled bands are inert, if all the states in a Brillouin zone are occupied, total 
current is obtained by integrating the group velocity over the whole zone

• The group velocity is                             and          is a periodic function so the 
integral yields zero and  there is no net current

• All insulators have even valence or a lattice containing an even number of 
atoms in the basis hence filled bands

h e= −k k
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Electrons and holes in semiconductors

• Hole energy. If the zero of energy is at the top of the band. The lower in the 
band the missing electron lies the higher the energy of the system. The 
energy of the hole is opposite in sign to the energy of the missing electron 
because it takes more work to remove an electron from a low orbital than a 
high orbital.

• Hole velocity. if we combine these two rules together then since there are 
two sign changes                                                                    and the velocity 
of the hole equals the velocity of the electron

• Effective mass. The effective mass                                      and substituting 
in the equations for        means that                   so the electron mass is 
negative and the hole mass is positive at the top of the valence band

• Hole charge. We take the equation of motion for the electron                                            

• Make the replacements                                    hence                                                    
and the effective charge of a hole is positive,
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Electrons and holes in semiconductors

• (a) At t=0 all states are filled except F at the top of the band the velocity    is 
zero at F because        

• (b) An electric field  is applied in the       direction, force on the electrons is 
in the        direction and all electrons make transitions together in the  
direction moving the hole to state E. A current flows

• (c) After more time the electrons move again in k-space, the hole is now at D
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• Motion of electrons in the conduction band and 
holes in the valence band in an electric field E

• The drift velocities are in opposite directions 
but currents are in the direction of E

From Kittel



Summary of Lecture 9
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• Semi-classical model of electron dynamics
• Bloch oscillations – experiment using semiconductor superlattice
• Density of states in energy bands 
• Comparison of electrons and holes in semiconductors: wavevector, 

energy, velocity, mass, charge
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Quantum Condensed Matter Physics
1. Classical and Semi-classical  models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)
3. Experimental probes of band structure (4L)

Photon absorption; transition rates, experimental arrangement for 
absorption spectroscopy, direct and indirect semiconductors, excitons. 
Quantum oscillations; de Haas-Van Alphen effect in copper and 
strontium ruthenate. Photoemission; angle resolved photoemission 
spectroscopy (ARPES) in GaAs and strontium ruthenate. Tunnelling; 
scanning tunnelling microscopy. Cyclotron resonance. Scattering in 
metals; Wiedemann-Franz law, theory of electrical and thermal 
transport, Matthiessen’s rule, emission and absorption of phonons. 
Experiments demonstrating electron-phonon and electron–electron 
scattering at low temperatures.

4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)
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Experimental probes of the band structure
• One way to investigate the band structure is the excitation of an electron by 

a photon from an occupied state to an empty state in the conduction band 
leaving behind a hole in the valence band and creating an electron-hole pair

• Photons cause nearly vertical transitions - the wavevector of a photon with 
energy close to the band gap is much smaller than is possible for an electron

• In a direct band gap semiconductor (GaAs) the lowest energy available 
states for electron and hole are at the same wavevector, the optical 
threshold is at the vertical transition
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• For indirect semiconductors 
(Si, Ge) the valence band 
maximum is at a different 
wavevector to the 
conduction band minimum

• For excitation at the 
minimum energy a phonon 
must be excited as the 
photon is absorbed, 2nd

order process, much less 
likely than a direct transition

For phonons and photons                                   the 
factor of around         between the two velocities is the 
difference between  vertical & horizontal transitions

510
/ / 2v k E kω π= =



Transition rates for photon absorption
• The initial and final electron states are related by
• optical absorption will have a threshold where                       above which 

there is a continuous range of possible transitions determined by the upper 
and lower limits of the bands

• The optical absorption coefficient is determined by the quantum mechanical 
transition rate          for exciting an electron in an initial quantum state     to a 
final state      by absorption of a photon of frequency

• Transition rate is given by Fermi’s golden rule                                      which 
depends on the dipole matrix element      and the density of states

• The matrix element is calculated using the initial and final states and the 
perturbation due to the interaction of the electric field of the photon            
and the electric dipole moment

• The electron states are described by Bloch functions which are a plane 
wave with wavevectors multiplied by functions            with the 
periodicity of the lattice 

QCMP Lent/Easter 2021 10.4

f i ω= +  
f i gE− = 

i fW→

fψ
iψ

ω
22 ( )i fW M gπ ω− =





0
ˆ ˆ, i

f i eM H H eψ ψ ⋅′ ′= = − ⋅ k rp E

M ( )g ω

e e= −p r

1 1( ) , ( ) fi ii
i i f fV V

u e u eψ ψ ⋅⋅= = k rk rr r

0
ie ⋅k rE

,i fu u,i fk k



Transition rates for photon absorption
• We calculate the matrix element by integrating over the whole crystal

• This can be simplified using conservation of momentum                                
so the phase factor is zero – if this is not so, the integral will sum to zero

• are functions with the periodicity of the lattice so we can separate the 
integral over the whole crystal into a sum over identical unit cells – which are 
in phase

• Hence                                                  where we assume the light is polarised 

along the x-axis
• To evaluate this matrix element we need to know the form of            which 

are derived from the atomic orbitals of the constituent atoms, so vary from 
one material to another.

• The wavevector of the photon is                                    but the wavevector of 
the electrons are much larger – less than                            so we can neglect 
the photon momentum and                hence photon absorption is vertical on 
the            diagram    
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Transition rates for photon absorption
• We need to consider the atomic states involved in the transition and how 

they affect the dipole matrix  element
• The semiconductors we consider all have 4 valence electrons
• Obvious for Si, Ge (group VI), for GaAs 3 electrons from Ga (Group III) and 

5 electrons from As (group V) are shared forming zincblende crystal
• The valence electron configuration of the 4 electron atom (Ge) is 4s24p2

• Diagram shows evolution of s- and p- atomic states to s- and p-bonding and 
antibonding molecular states  to the valence and conduction bands of the 
crystal. The level ordering is correct for GaAs and Ge but different for Si
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• Diagram suggests that the top of 
the valence band is derived from 
p-bonding orbitals  while the 
bottom of the conduction band is 
from s-antibonding orbitals

• Hence optical transitions between 
the  valence band and the 
conduction band are electric-
dipole allowed

M Fox Optical properties of solids



GaAs band structure
• GaAs band structure shown in diagram for 

2 directions in reciprocal space (100), (111)
• GaAs is a direct bandgap semiconductor
• 3 valence bands - occupied states 

corresponding to 3 p-bonding orbitals
• Single empty conduction band corresponds 

to s anti-bonding state
• Strictly valid only at zone centre       
• Atomic character only well defined at high 

symmetry points - changes away from
• Lower diagram shows simplified structure 

for small    with parabolic dispersion
• One electron band, three hole bands
• Bandgap given by Eg, split-off hole band 

lower in energy  by
• Heavy hole and light hole transitions  to 

conduction band shown
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Transition rates for photon absorption
• The factor of            that appears in Fermi’s golden rule is the joint density of 

states due to the fact that both initial and final states lie in continuous bands
• E-k relations for conduction, heavy-hole, light-hole, split-off hole bands

• Conservation of energy during a heavy-hole or light hole transition requires

• We define reduced electron-hole mass by                             hence we can 
write

• Using formula for density of states per unit volume we find 

• So the density of states factor rises as                  for energies greater than 
the bandgap
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• Beer’s law:
• defined as fraction of intensity    (power per unit area) absorbed per unit length

Experimental arrangements for optical absorption 
spectroscopy
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Photon absorption – direct semiconductors
• Having discussed the matrix element and DoS contributions to Fermi’s 

golden rule,                                      , we can deduce frequency dependence 
of the absorption coefficient      (fraction of power absorbed per unit length)

• We expect that for                 there will be no absorption and
• For                 we expect that                            with the absorption increasing 

above the bandgap 
• Also since                         we expect transitions with larger reduced masses 

give rise to stronger absorption
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• These results can be compared to 
experimental data

• The diagram shows the square of 
the absorption coefficient plotted 
versus photon energy for III-V direct 
band-gap semiconductor InAs

• The linear dependence confirms         
.                       , it gives a bandgap 
of 0.35eV in good agreement with 
electrical measurements

2
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E D Palik (1985) Handbook of the optical constants of solids



• The semiconductor crystal may include 
impurities and defects with energies 
within the bandgap – hence additional 
absorption below the bandgap energy

• The parabolic band approximation is 
only valid near            - as the photon 
energy increases above the bandgap 
the joint DoS is no longer                

• In this case we need to use the full 
band structure to evaluate the DoS

Photon absorption
• In many III-V semiconductors including GaAs the frequency dependence of 

absorption                           is only approximately obeyed for a number of 
reasons

• We neglect Coulomb attraction between the electrons and holes which can 
enhance absorption and lead to formation of a bound pair – an exciton

• These effects get larger as bandgap increases and temperature is lowered –
hence previous example is InAs narrow BG semiconductor (0.35eV) at 298K
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Photon absorption – indirect semiconductors
• Important semiconductors e.g. Si and Ge have their conduction band 

minimum away from Brillouin zone centre and the valence band maximum
• A transition between band edges needs a big change in electron wavevector
• Transition must involve a phonon to conserve momentum
• Consider an indirect transition exciting a valence band electron            to a 

state              in the conduction band. Photon energy       , phonon energy
• Conservation of energy                                and momentum
• The    allows for the possibility of phonon absorption (+) or emission(-)
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• Have neglected photon’s momentum 

which is small on these scales
• Indirect transitions which involve both 

photons and phonons are second 
order process which are much less 
likely than the absorption of a photon 
be a direct and semiconductor

• Hence absorption rate for indirect 
semiconductors much smaller above 
band edge –for Si/GaAs one tenth

E D Palik (1985) Handbook of the optical constants of solids
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Photon absorption – indirect semiconductors
• Derivation  of QM transition rate for indirect band gap semiconductor gives 

for absorption coefficient                                                - see Yu and Cardona
• Frequency dependence different to that for direct bandgap semiconductors –

can be used to determine if bandgap is direct or not .
• Threshold close to bandgap, depends if the phonon is absorbed or emitted
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• Band structure for Ge similar to GaAs but 
indirect with band gap of 0.66eV - less than 
0.8eV direct gap at 298K

• Figure (a) shows indirect absorption in Ge 
near bandgap with                  

• Expect contributions from phonon emission 
and absorption – latter only possible at high 
temperatures  where phonons are excited

α ω∝ 

gEα ω∝ −

• (b) shows band edge absorption 
above 0.8eV with 

• Direct absorption much larger 
than indirect absorption

(a) GG McFarlane and V Roberts Phys Rev 97, 1714-6 
(1955)

(b) WC Dash and R Newman Phys Rev 99, 1151 (1955)

(111) (100)

Ge band 
structure



Photon absorption – indirect semiconductors
• Figure shows interband absorption of Si to 

relatively high energy -
• Very large absorption                     above 

3eV with two peaks
• Compares to indirect region just above 

bandgap with 
• Band structure of silicon shown, indirect 

bandgap value -
• Minimum direct separation between 

conduction and valence bands near    
point 

• Second absorption near 
• In both regions conduction and valence 

bands parallel and               very small 
• Hence very high joint density of states and 

very high direct transition rate and 
absorption
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Excitons
• Peak in GaAs absorption spectrum at low 

temperatures signifies presence of excitons
• An exciton is a bound electron-hole pair 

analogous to the hydrogen atom
• In an exciton  electron and heavy hole 

masses  are combined in a reduced 
effective mass

• GaAs has permittivity 
• We can use modified equation for the 

energy levels of a hydrogen atom to 
calculate energy levels of excitons

• is the energy level quantum number
• Energy of exciton is equal to energy 

required to create an electron-hole pair        
minus the binding energy or
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• Figure shows absorption by three 
exciton energy levels below the 
conduction band in pure GaAs

• Using                       we obtain      
.                      in good agreement 
with the results

• Quantum confined structures 
greatly enhance exciton effects
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Summary of Lecture 10
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• Transition rates for photon absorption, Fermi’s golden rule, 
matrix elements, density of states

• GaAs band structure
• Photon absorption in direct semiconductors, InAs, GaAs
• Photon absorption in indirect semiconductors, contribution of 

phonons in Ge, above bandgap absorption in Si.
• Excitons
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Quantum Condensed Matter Physics
1. Classical and Semi-classical  models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)
3. Experimental probes of band structure (4L)

Photon absorption; transition rates, experimental arrangement for 
absorption spectroscopy, direct and indirect semiconductors, excitons. 
Quantum oscillations; de Haas-Van Alphen effect in copper and 
strontium ruthenate. Photoemission; angle resolved photoemission 
spectroscopy (ARPES) in GaAs and strontium ruthenate. Tunnelling; 
scanning tunnelling microscopy. Cyclotron resonance. Scattering in 
metals; Wiedemann-Franz law, theory of electrical and thermal 
transport, Matthiessen’s rule, emission and absorption of phonons. 
Experiments demonstrating electron-phonon and electron–electron 
scattering at low temperatures.

4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)

11.2



Quantum oscillations

• For pure samples, many material properties have been found to oscillate as 
a function of applied magnetic field

• The form of these quantum oscillations can be used to infer the shape of the 
Fermi surface and other key electronic properties

• A full quantum mechanical treatment of the motion of electrons in a strong 
magnetic field is problematic

• When the lattice potential can be neglected - for free electrons the 
Schrodinger equation can be solved directly

• For real materials the lattice potential is essential to the band structure and 
cannot be neglected

• We use a semi-classical treatment using the Bohr-Sommerfeld quantisation 
condition

QCMP Lent/Easter 2021 11.3
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Quantum oscillations
• The canonical momentum for a particle in a magnetic field,     , (conjugate to 

the position    ) is the sum of the kinetic momentum                  and the field 
momentum        so

• We assume that orbits in a magnetic field are quantized according to the 
Bohr-Sommerfeld relation                                        where     is an integer 

• Particles with charge     moving in a strong magnetic field orbit along a path 
determined by the Lorentz force                       . 

• This relation connects the components of velocity and acceleration of the 
particle at    in the plane perpendicular to      and can be integrated to give             
.                        where     is measured from the centre of the orbit

• Hence                                                                                                 
integrating around a loop

• Now                                                                   by Stokes’ theorem, and 

since                equals twice  

the area     enclosed by the loop

• Putting this together:

11.4
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Quantum oscillations
• From the last slide                                                                                
• We arrive at the conclusion that the flux threading the real space orbit for an 

electron is quantised
• Can we relate motion of the electron in real space to motion in k-space?
• From earlier                                     so with constant     ,     is perpendicular 

to    and its magnitude is a factor              different from    . 
• So the k-space orbit has the same shape as the real space orbit, but is  

turned by 90 degrees and stretched by
• This means that the area enclosed by the k-space orbit       is 

• Where      has been replaced by the electron charge
• Combining this result with                                         from above  
• We obtain

• Which is an expression for the area of an orbit in k-space as a function of  
integer     and suggests that the area is quantised 
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• As     increases one tube after another will satisfy this condition at field 
values of

• Consequently the contribution of this slice to             oscillates with a period
given by the Onsager relation:       

• Electrons now live in a set of cylinders “Landau 
tubes” with area                                which cut 
through the zero field Fermi surface                                  

• What is the     field dependence of the DoS ?             
• Consider a slice          through Fermi surface area
• This will only contribute to             if its area 

coincides with the area of a Landau tube

Density of states oscillations
• In a magnetic field, the allowed k-

states no longer form a regular lattice 
as k is not a good quantum number

• All the k-states in the vicinity of a k-
orbit superimpose to form the orbital 
motion of the electrons
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Density of states oscillations
• Energy of the band electrons is 

completely quantised into 
ladder of Landau levels in the 
plane perpendicular to  B

• Motion parallel to B is 
unconstrained

• The DoS is an infinite ladder of 
Landau levels each with a 1D 
density of states function 
superimposed

• As each of the sharp peaks in 
the DoS moves through the 
chemical potential there is a 
modulation of the density of 
states and chemical potential

• This affects a number of 
different properties of the 
material

QCMP Lent/Easter 2021 11.7
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Fermi surface orbits
• We can only measure quantum 

oscillations associated with extremal 
orbits – a Landau tube touches rather 
than cuts through the Fermi surface

• In these regions are many close lying 
orbits with nearly identical cross-
section causing DoS to add coherently

• For the rest of the Fermi surface the 
oscillations attributed to each orbit 
have different periods and add 
incoherently wiping out the effect

• Several different frequencies may be 
superimposed corresponding to 
different possible extremal orbits –
e.g. neck and belly orbits in Cu and Au

• Measurement of observed frequencies 
as a function of    allows Fermi surface 
to be mapped

QCMP Lent/Easter 2021 11.8

Singleton

Singleton
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• Open orbits do not give rise to quantum oscillations



de Haas-Van Alphen effect 
• Many observable properties depend on the DoS at the Fermi level
• Magnetic susceptibility            is proportional to             , measurements           

at low temperatures exhibit oscillations, when plotted against 1/B allow the 
determination of extremal Fermi surface cross-section – the de Hass-Van 
Alphen effect

• Experiments require high purity samples – electronic mean free path must 
be long enough to allow the electrons to complete one orbit before scattering

• High magnetic field: which makes the cyclotron orbits tighter and helps to 
fulfil the mean free path condition

• Low temperature: the DoS oscillations are smeared out when the Fermi 
surface is smeared by thermal broadening, typically T<1K for transition 
metal compounds and <100mK for heavy fermion compounds

• Measurement system consists of sample coil and compensating coil in 
series opposition - without a sample the voltages induced cancel

• Voltage induced                                             where     is a constant
• If we know               we can find                in which dHvA oscillations occur 
• Use either large static field up to 20 T plus small modulation field of a few 

mT or pulsed fields up to 60T rising to that value in a few mS
QCMP Lent/Easter 2021 11.9
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De Haas Van Alphen effect in Copper
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D Shoenberg Nature 183, 171 (1959), Proc Roy Soc
79, 1 (1962)

• First observed at the Cavendish 
by David Shoenberg in 1959

• Impulsive field – discharged         
.             capacitor at         
through liquid air cooled magnet 
rising to                        in 

• Magnetic moment oscillations 
measured by coil around sample

• Whisker of Cu oriented along 
(111) axis, oscillation period of      
,                             effective 
mass of 1.3 times electron mass

• Other whiskers along (100) and 
(110) directions did not show the 
effect – not clear why

9 11.7 10 gauss− −×

41T 10 Gauss = 

52 10 gauss× 10mS

4000 Fµ 2500V



De Haas Van Alphen effect in Sr2RuO4
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John Passaneau, Penn State

• 2D layered perovskite structure 
• Metallic properties – superconducting at 

temperatures <1K and well described by 
Fermi liquid theory – similar to 3He

• High purity crystals prepared by floating  
zone method – moving vertical 
polycrystalline rod down through focussed IR 
radiation from halogen lamps

• Only small region is molten (~2100°C) at any 
one time, at liquid/solid boundary impurities 
diffuse into liquid region

• As liquid region moves through crystal, 
impurities move with it leaving pure single 
crystal behind

• Material not in contact with container – often 
main source of contamination

• Impurities collect at one end of crystal which 
can be cut off 

Y Maeno et al Phys Today 54, 42 (2001)



De Haas Van Alphen effect in Sr2RuO4
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• Field modulation technique used to 
measure susceptibility at temperatures 
between 20mK and 1.2K in static fields up 
to 18T

• Beating in oscillations clearly visible
• Fourier transform of data plotted as a 

function of           reveals three main peaks             
.           plus harmonic at 

• Splitting in     causes beats in long field 
sweeps

• Amplitude of oscillations rises dramatically 
below 1K following predictions of Fermi 
liquid theory

, ,α β γ
β

2α

A P Mackenzie et al Phys Rev Lett 
76, 3768 (1996)

1/ B



De Haas Van Alphen effect in Sr2RuO4
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• Observed frequencies are proportional 
to k-space area

• Consistent with a Fermi surface with 
two electron cylinders            centered
on         line and one hole cylinder       
running along corners of Brillouin zone

• Results compared with calculated 
Fermi surface parameters

( , )β γ
ZΓ ( )α

α

α

αβ γ

A P Mackenzie et al Phys Rev Lett 76, 3768 (1996)



Summary of Lecture 11
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• Quantum oscillations
• Density of states oscillations
• de Haas-van Alphen effect (dHvA)
• Fermi surface orbits
• dHvA in copper
• dHvA in strontium ruthenate
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Quantum Condensed Matter Physics
1. Classical and Semi-classical  models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)
3. Experimental probes of band structure (4L)

Photon absorption; transition rates, experimental arrangement for 
absorption spectroscopy, direct and indirect semiconductors, excitons. 
Quantum oscillations; de Haas-Van Alphen effect in copper and 
strontium ruthenate. Photoemission; angle resolved photoemission 
spectroscopy (ARPES) in GaAs and strontium ruthenate. Tunnelling; 
scanning tunnelling microscopy. Cyclotron resonance. Scattering in 
metals; Wiedemann-Franz law, theory of electrical and thermal 
transport, Matthiessen’s rule, emission and absorption of phonons. 
Experiments demonstrating electron-phonon and electron–electron 
scattering at low temperatures.

4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)

12.2



Photoemission

• The most direct way to measure the electron spectral 
function is by photoemission

• In a photoemission experiment photons are incident 
on a solid sample. Electrons are excited from 
occupied states in the band structure to states above 
the vacuum energy

• The excited electron leaves the crystal and is 
collected in a detector that analyses both its energy 
and momentum

• The incident photon carries very little momentum 
compared to the crystal momentum, so the 
momentum of the emitted electron parallel to the 
surface is close to that of its original state in the band 
structure of the solid

• The perpendicular component of the momentum is 
not conserved – changes as electrons escape 
through surface

QCMP Lent/Easter 2021 12.3

Density of states



Photoemission
• We relate the energy of the outgoing electrons,      , to the energy of the 

incoming photons        , the work function    and the initial energy of the 
electron in the solid

• In this equation       is referenced to the Fermi energy      ,  but      is 
referenced to the vacuum ground state energy    

• We use the detector angle     to find      with
• Problems occur if sample surface is rough as momentum parallel to the 

surface is changed
• Photoemission data is easiest to interpret when there is little dispersion of 

electron bands perpendicular to the surface – as in anisotropic layered 
materials

• Analysing both the energy and momentum of the outgoing electron allows 
the determination of the band structure directly. Integrating over all angles 
gives a spectrum proportional to the total density of states. 

• Photoemission gives information only about the occupied  states – inverse 
photoemission involves injecting an electron into a sample and measuring 
the ejected photon, allowing the mapping of unoccupied bands
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Angle Resolved Photoemission Spectroscopy (ARPES) 
equipment
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• ARPES Systems use ultrahigh 
vacuum techniques                          so 
electrons travel to detector without 
encountering a gas atom

• 3-axis sample rotation 
• Cryogenic temperatures for samples
• Detectors available for electron spin 

direction measurements
Scientaomicron DA30 ARPES system

910 mbarP −≤

wikipedia



Angle resolved photoemission - GaAs
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• Sample is GaAs 50nm thin film doped with Be 
protected by 1nm thick As cap layer

• Soft x-rays of different polarizations (893eV) 
give photo-electrons enough energy to escape. 

• ADRESS beamline at Swiss Light Source used
• UHV conditions – 5x10-11mbar, T=11K
• Thermal broadening 50-150meV
• Results show Band dispersion           including 

light hole, heavy hole and split-off hole bands
( )E k

GaAs

M Kobayashi et al Appl Phys Lett 101, 242103 (2012)
V N Strocov et al J Synch. Rad. 21, 32 (2014)



Angle resolved Photoemission - layered metal Sr2RuO4
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• 28eV photons, electron energy 
resolution <21meV

• Bands nearly 2D in character
• (a) energy scans from    to centre of 

zone face      (b) from      to corner 
• Several bands sharpen as they 

approach and cross
• (c) shows positions of peaks as a 

function of momentum at      
• (c) should be compared to band 

structure calculation of Fermi 
surfaces in (d) 

Γ
MM X

FE

FE

( )d

John Passaneau, Penn State

Experiment:  A Damascelli et al Phys Rev 
Lett 85, 5194 (2000)

Theory: I I Mazin and D J Singh Phys Rev 
Lett 79, 733 (1997)

Fermi surface 
map



Tunnelling
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• Tunnelling spectroscopies, which inject or remove electrons through a 
barrier have now evolved to be very important probes of materials

• A potential barrier allows a probe (usually a simple metal) to be maintained 
at an electrical bias different from the chemical potential of the material

• The current passed through the barrier comes from non-equilibrium injection 
– tunnelling

• Model for tunnelling from a metal into more complex material shown in figure
• Current is given by integrated area 

between two chemical potentials –
provided the matrix element for 
tunnelling is taken into account

• If DoS for metal (or probe) – labelled 1 
is slowly varying, the differential 
conductance               is proportional to 
DoS of material itself at the bias  
above the chemical potential 

d / dI V

2µ

1
2metal

eV
sample



Tunnelling
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• With the metal/probe (1)  and sample (2) maintained at different electrical 
potentials separated by a bias voltage, the current through the junction can 
be predicted to be of the form

• Where            is the transmission through the barrier for an electron of 
energy         and             are the densities of states  

• If the barrier is very high so          is not a strong function of energy and if the 
density of states in the contact/probe,     , is approximately constant the 
energy dependence comes from the density of states,      inside the sample 
being investigated

• Hence the differential conductivity is proportional to the density of states in 
the sample

• It is difficult to maintain large biases so most experiments are limited to 
probing electronic structure within a volt or so of the Fermi energy

1 2( ) ( ) ( )d
eV

I g g T
µ

µ

ω ω ω ω
+

∝ ∫
( )T ω
ω 1 2,g g

( )T ω

2 ( )dI g eV
dV

µ∝ +

1g
2g
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Scanning tunnelling microscopy
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• A scanning tunnelling microscope (STM) uses a sharp metal tip positioned 
by 3 piezoelectric transducers with vacuum as the tunnel barrier.

• The tunnelling probability is an exponential function of the barrier thickness
• High spatial resolution possible - 0.1nm lateral and 0.01nm depth, individual 

atoms can be imaged and manipulated despite nm or larger tip
• Tip close to surface - electron 

wavefunctions overlap 
• On applying bias to sample a 

tunnel current is measured
• Current converted to a 

voltage and fed back to the z-
piezo controller to keep the 
current constant

• Z piezo voltage gives surface 
topography when scanned

• Invented by Binnig and Roher
at IBM labs in Zurich - won 
Nobel prize in 1986 Introduction to scanning tunnelling microscopy C J Chen

G Binnig et al Appl Phys Lett 40, 178 (1982)
G Binnig et al Phys Rev Lett 49, 57 (1982)



Scanning tunnelling microscopy  
catalysts
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• Scanning tunnelling microscopy used to study 
processes on single crystal surfaces

• E.g. design of new catalysts - in this case to 
produce hydrogen from hydrocarbons and water

• STM image shows the surface of a Ni single 
crystal

• Some of the Ni atoms are substituted by Au 
atoms. The Au atoms are darker  and the Ni 
atoms around a Au atom are brighter

• This is not because the Au atoms are 
depressed but they have a lower local DoS and 
the Ni atoms adjacent to a Au atom have 
enhanced DoS due to perturbation by Au atom

• Because DoS is closely related to catalytic 
reactivity the perturbed Ni atoms are more 
highly reactive and act as a better catalyst

F Besenbacher et al Science 279, 1913 (1998)



Scanning tunnelling microscopy – positioning single atoms
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• The tip is positioned above the 
adatom to be moved

• The tunnelling current is increased 
lowering the tip until the tip/adatom
interaction energy reaches diffusion 
activation – where adatom can move 
across ridge between stable positions

• Pull atom to desired location, reduce 
current to move tip away

• In UHV at 4K Fe atoms can be moved 
on Cu(111) surface to form a 48 atom 
ring with a diameter of 7.13nm 

• Atom ring acts to confine Cu surface 
state electrons

• Tunnelling spectroscopy shows 
discrete resonances in local density 
of states indicating size quantisation

M F Crommie et al Science 262, 291 (1993)



Cyclotron resonance
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• It is possible to make a direct measurement of the cyclotron resonance 
frequency                        and hence effective mass using millimetre waves or 
far infrared radiation to excite transitions between Landau levels

• This experiment is known as cyclotron resonance
• For semiconductor samples which have much lower carrier density than 

metals, the radiation can easily penetrate samples

/c eB mω ∗=

• Measurements are usually made in 
transmission,  either by fixing the 
magnetic field and varying the energy 
of the radiation or using a fixed 
frequency source  such as a far infra-
red laser (shown here) and sweeping 
the magnetic field detecting the 
radiation with a bolometer.

• The linewidth of the resonance gives 
information about the scattering rate

• In lightly doped samples carriers must be excited into bands by raising the 
temperature or illuminating the samples with above bandgap radiation



Cyclotron resonance in Ge
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• Figure shows absorption by cyclotron 
resonance in a single crystal of Ge at 
4K

• Electrons and holes present because 
of above bandgap illumination

• Microwave frequency 24GHz and 
magnetic field applied in (110) plane 
at 60 degrees to [100] axis

• Resonance due to light and heavy 
holes visible as are three electron 
resonances

• The three electron resonances occur 
because the anisotropic band minima 
lie along [111] axes and the static 
magnetic field makes three different 
angles with these 4 axes

• Experimental and calculated effective 
masses are shown in the figure

G Dresselhaus et al Phys Rev 98, 368 (1955)



Summary of Lecture 12
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• Photoemission
• Angle resolved photoemission spectroscopy (ARPES)
• ARPES equipment 
• ARPES applied to GaAs and strontium ruthenate
• Tunnelling, scanning tunnelling microscope (STM) 
• STM applied to catalysts and positioning atoms
• Cyclotron resonance - example germanium
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