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Quantum Condensed Matter Physics

1. Classical and Semi-classical  models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)
Types of bonding; Van der Waals, ionic, covalent. Crystal structures. 
Reciprocal space, x-ray diffraction and Brillouin zones. Lattice 
dynamics and phonons; 1D monoatomic and diatomic chains, 3D 
crystals. Heat capacity due to lattice vibrations; Einstein and Debye 
models. Thermal conductivity of insulators. Electrons in a periodic 
potential; Bloch’s theorem. Nearly free electron approximation; plane 
waves and bandgaps. Tight binding approximation; linear combination 
of atomic orbitals, linear chain and three dimensions, two bands. 
Pseudopotentials.. ……….

3. Experimental probes of band structure (4L)
4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)
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The reciprocal lattice and diffraction

• Reciprocal lattice concept arises from scattering of waves by crystals.
• Builds on Fraunhofer diffraction from a grating generalised to scattering from 

a 3D periodic lattice.
• Consider scattering of a plane wave off a single atom or more generally the 

basis forming the unit cell

• Incoming wave of wavevector is incident on 
potential centred at

• At large distances scattered wave is circular 
• Total field taken as a scalar 

• Details of scattering buried in Form Factor 
• This is a function of scattering angle, type and arrangement of atoms etc.
• Total scattered intensity assumed small
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The reciprocal lattice and diffraction
• At large distance from the scattering centre
• Defining scattered wavevector momentum transfer

• The waveform is given by:

• Effective scattering amplitude
• Summing over identical lattice sites the scattered intensity is proportional to 

the differential scattering cross-section:

• We add terms with different phases            leading to cancellation unless 
Bragg condition                        is satisfied for all      with      an integer 

• If two vectors satisfy the Bragg condition then so will their sum hence the 
special values of               satisfying this lie on a reciprocal lattice

• Primitive vectors of the reciprocal lattice in terms of real space lattice 
primitive vectors:
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Diffraction conditions
• For elastic scattering conservation of energy requires                  and Bragg 

condition requires                        where      is a reciprocal lattice vector
• Combining these two conditions                                    
• This defines a plane perpendicular to       which intersects      at its midpoint
• The set of all such planes defines the incident wavevectors that satisfy the 

conditions for diffraction
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• Reciprocal lattice points shown
• incident wavevector with origin chosen 

(point    ) so it ends on a reciprocal lattice point
• Sphere radius       drawn about origin of 
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Diffraction conditions
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• From last slide
• The spacing between parallel lattice planes perpendicular to

is given by   
• Given that                      we can write 

• Where     is the angle between the incident beam and the crystal planes and 
equals half the angle of deflection

• The indices defining an actual crystal plane may contain a common factor     
and we can generalize this equation to give the conventional form of Bragg’s 
law:

θ
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High resolution x-ray diffraction
• Find thickness and composition of 

SiGe thin films on Si substrates
• From Bragg’s law thickness

• Vertical lattice constants            
found from

• Hence concentration of Ge found  

QCMP Lent/Easter 2021  

sampledetector

monochromator

X-ray 
source 

( ) 12cost λ ω ω −= ∆
,L Sc c

sin
sin

SL

S L

c
c

ω
ω

=

X-ray source 

detector

sample

View from above

ω ω

5.7



X-ray analysis of superlattice structure
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• The volume of each Brillouin zone (adding up the fragments) is equal to the 
volume of the primitive unit cell of the reciprocal lattice, which is             
where         is the volume of the primitive unit cell of the crystal.   

Diffraction conditions and Brillouin zones
• The set of reciprocal space planes satisfying  

the Bragg condition is constructed by finding 
those planes which are perpendicular 
bisectors of every reciprocal lattice vector     . 

• The planes so constructed divide reciprocal 
space up into cells. The cell closest to the 
origin is called the first Brillouin zone. The       
Brillouin zone consists of all the fragments 
exterior to the                plane but interior to 
the       plane. 

• The first Brillouin zone is the Wigner-Seitz 
cell of the reciprocal lattice which has an 
important role in discussion of electronic 
states in a periodic potential. 
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Brillouin zone in 3D
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(Taken from Kittel)

• Using                            etc we can calculate primitive vectors in reciprocal 
space for a number of lattices 

• Reciprocal lattice of simple cubic lattice is also simple cubic
• Reciprocal lattice of face centred cubic is body centred cubic
• Reciprocal lattice of body centred cubic is face centred cubic
• Example: face centered cubic lattice

Primitive vectors of FCC lattice Reciprocal lattice of FCC is BCC
Brillouin zones shown



Lattice dynamics and phonons – 1D monatomic chain

• Consider a row of identical atoms 
distance      apart connected by springs
of constant      and free to move 
horizontally

• Displacement of       atom at point                is given by      , equation of 
motion:

• We guess wave solution:
wavelength                     and period

• Substituting into equation of motion we obtain 

• Hence  dispersion relation between frequency and wavevector
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Lattice dynamics and phonons – 1D monatomic chain

• From last slide
• Periodic in    with period
• Long wavelength modes                  

linear dispersion  
• Same as for a wire with tension             

and density 
• compressive waves with velocity

• These waves behave like sound 
waves - acoustic mode 
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• For larger    dispersion is periodic, phase shift between neighbouring 
atoms given by

• So for                 neighbouring atoms move in phase, for             they 
move in anti-phase

• We simplify things by only considering a range of 
• This corresponds to the first Brillouin zone
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Lattice dynamics and phonons – 1D diatomic chain
• The monoatomic chain contains only acoustic modes. The spectrum 

becomes more complicated with more atoms per unit cell.
• Assume two different atoms with different masses and spring constants

• There are two equations of motion

• The solution is quite complicated – so look at a limit
• Suppose the atoms  are the same mass  so                 and are quite strongly 

bonded in molecular pairs so
• Every ‘molecule’ will have a mode where the atoms oscillate out of phase at 

a frequency
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1D diatomic chain – different spring constants
• The coordinate undergoing oscillation is                                       
• We have assumed this is at             where each molecule undergoes the 

oscillation in phase with the next 
• Since               the restoring force and frequency is largely independent of
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• There are two branches to the 
dispersion curve

• The acoustic branch the (low) 
frequency vanishes linearly 
with wavevector.

• The optical branch has finite 
(high) frequency as             and 
is referred to as optical 
because of interaction  with 
light 

• Atomic displacements for two 
modes quite different

0q →
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1D diatomic chain – different masses
• Using the equations of motion assuming               but

• With lattice constant     ,  substituting in travelling wave solutions  with 
amplitudes          on alternate planes:

and solving the simultaneous equations leads to  
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• May be solved for     - see diagram
• Assuming                     or 
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• Notice there are no solutions for 
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Lattice dynamics and phonons – 3D crystal
• Extending to 3D requires a dispersion relation           describing waves 

propagating in different directions
• As well as compressional waves there are transverse waves resulting in 

three branches of phonons, two transverse and one longitudinal.
• There are always    acoustic modes and for a solid with     atoms per unit cell 

there will be                optical modes – again split into two transverse and 
one longitudinal.
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Inelastic neutron scattering
• Incident neutron transfers 

some of its (well controlled) 
energy    and momentum       
to phonon

• Measurement made of 
outgoing neutron energy and 
momentum

• Most common method for 
measuring phonon dispersion 
curves

• Can also measure phonon 
lifetimes

• Quantitative technique, can 
measure throughout Brillouin 
zone 

• Neutrons produced by nuclear 
reactor – so large facilities 
required.
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Multi axis crystal spectrometer at the National Institute for 
Standards and Technology Centre for Neutron Research in 
Gaithersburg, Maryland, USA –said to be the most intense 
neutron beam in the world.
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Summary of Lecture 5
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• Reciprocal lattice and diffraction
• Diffraction conditions
• High resolution x-ray diffraction
• Diffraction conditions and Brillouin zones
• Brillouin zones in 3D  
• Lattice dynamics and phonons – 1D monatomic chain
• 1D diatomic chains – different spring constants
• 1D diatomic chains – different masses
• Inelastic neutron scattering for determination of phonon dispersion
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Quantum Condensed Matter Physics

1. Classical and Semi-classical  models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)
Types of bonding; Van der Waals, ionic, covalent. Crystal structures. 
Reciprocal space, x-ray diffraction and Brillouin zones. Lattice 
dynamics and phonons; 1D monoatomic and diatomic chains, 3D 
crystals. Heat capacity due to lattice vibrations; Einstein and Debye 
models. Thermal conductivity of insulators. Electrons in a periodic 
potential; Bloch’s theorem. Nearly free electron approximation; plane 
waves and bandgaps. Tight binding approximation; linear combination 
of atomic orbitals, linear chain and three dimensions, two bands. 
Pseudopotentials.. ……….

3. Experimental probes of band structure (4L)
4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)
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Lattice dynamics and phonons – density of states

• We need to calculate density of states for phonons
• In 1D monoatomic chain of N atoms (N large), there are N degrees of 

freedom and hence N modes.
• So the allowed points in k-space are

• Here                                  and the lattice constant
• Same spacing of k-states as for electrons, but discrete nature of atoms leads 

to maximum momentum – from counting degrees of freedom on Brillouin 
zone boundary

• In 3D each branch of phonon spectrum  has N states but                         
where          is the volume of the unit cell and              the volume of the 
crystal 

• Volume associated with each allowed k-point is 
• There are    acoustic branches and                 optical branches (     atoms per 

unit cell)  
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• This cannot apply as the dispersion approaches the zone boundary, in the 
Debye model the spectrum is cut off at a frequency       and wavevector

• This frequency is determined by counting the total number of states and 
setting this equal to     ,

hence:                                                 Which gives

• This corresponds to replacing the correct cutoff (determined by intersecting 
Brillouin zone planes) by a sphere of radius         

• For the acoustic modes, which disperse linearly 
as              we have             where    is the speed 
of the mode and following similar arguments as 
for electrons we obtain the Debye model result 

Lattice dynamics and phonons – Density of states
• We start with the optical branches and use the Einstein Model which 

assumes a flat dispersion:                     In this case the density of states is 
simply       
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Heat capacity due to lattice vibrations- Einstein model
• Phonons obey Bose-Einstein statistics, their number is not conserved so the 

chemical potential is zero and we use the Planck distribution

• Note that              for                    and                           for   
• The internal energy is given by:                                           
• For the Einstein model given that                                       

• We obtain                                  and for the specific heat capacity

• At low temperatures this varies as                                and is very small, but it 
saturates at a value of          (the Dulong and Petit law) above the 
characteristic temperature                            
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Heat capacity due to lattice vibrations – Debye model
• At low temperatures the contribution of optical modes is small and the Debye 

spectrum is appropriate giving for each mode:

• Defining the Debye temperature                          and using                          
from above, we obtain

• By writing                        and including a factor of 3 for different modes we 
obtain for the internal energy

2
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• and by differentiating with 
respect to temperature, the 
heat capacity – plotted right

For , 0 3D V BT x C Nkθ → ⇒ ≈
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Heat capacity due to lattice vibrations - Debye model

• From last slide

• We approximate for very low temperatures by allowing                      and 
using the standard integral 

• Hence                                        . 
• Differentiating with respect to temperature

• temperature dependence
• Experimental results for solid Argon
• Clearly a good approximation  
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Heat capacity due to lattice vibrations and electrons

6.8

• In metals we have both electrons and 
lattice vibrations giving rise to a low 
temperature heat capacity of the form

• If we plot                        we obtain a 
straight line.

• the            intercept is determined 
by the electron specific heat

• the gradient is determined by lattice 
specific heat

3 2/v vC T T C T Tα β α β= + ⇒ = +

2/vC T vs T

β

α 0T =

W S Corak et al Phys Rev 98, 1699, (1955)

W H Lien and N E Phillips Phys Rev 133, A1370 
(1964)QCMP Lent/Easter 2021 



Einstein and Debye models 

• Comparison of Einstein and 
Debye models of specific 
Heat

• At low temperatures difficult 
to thermally excite optical 
modes hence Einstein is 
below Debye 

• Comparison of (a) Debye 
density of States with (b) 
density of states of a real 
material

• Complex shape due to 
adding different branches of 
phonon spectrum and van 
Hove singularities
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6.10

• At low    ,    is large and    is often determined by sample boundaries –
constant with      so    

• In middle range of    ,     often peaks and impurity scattering is important.
• As     increases up to and beyond,     ,   , phonon numbers and scattering 

increases (umklapp particularly important)     decreases rapidly

Thermal conductivity of insulators
• The thermal conductivity,     is defined by                        where        is the flux 

of heat (energy per unit area per unit time)
• Kinetic theory gives                                    ,      the phonon specific heat per 

unit volume,    phonon velocity,            mean free path and     scattering time
• Debye theory:              at low     and constant at high   .     is velocity of 

sound and almost constant,   depends on several scattering mechanisms
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• Phonons can be scattered by (i) 
other phonons – in “normal” and 
“umklapp” processes (ii) point 
defects (iii) sample boundaries (iv) 
crystal dislocations.

• The overall scattering time given 
by: 1 1 1 1 1
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Thermal conductivity of insulators
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Thermal conductivity of diamond

0.1% 
13C

1% 
13C

Wei et al PRL 70, 3674 (1993)

• Rapid increase  with              at low temperatures – boundary scattering can 
dominate so size of sample important

• peaks in middle range of    and impurities determine peak value   
• rapidly decreases at higher     as more phonons are excited with umklapp

particularly important due to with large changes in wavevector
• Diamond has a very high thermal conductivity at room     - 5 times copper

3Tκ ∝

Tκ
κ T

Thermal conductivity of LiF
Effect of impurities (isotopes)

Thermal conductivity of LiF
Effect of boundary scattering

Curves 
correspond to 
different widths 
of specimen
Phys Rev 156, 
975 (1967)

Curves correspond 
to different isotopic 
purity of specimens
Proc. R. Soc. Lond. 
A 1965 289 66-80

(A) 7.3mm 
(B) 4mm 
(C) 2.1mm 
(D)1.1mm 0.02% 6Li

0.01% 6Li
4.6% 6Li
90.4% 6Li
25% 6Li
50.1% 6Li

T



Electrons in a periodic potential
• So far we have ignored the electrostatic potential due to the positively 

charged ions.
• We are looking to find the set of plane waves which satisfy the periodic 

boundary conditions
• Hamiltonian                                                                where            is periodic
• Because           has the same periodicity as the lattice it can be Fourier 

expanded as
• We define its Fourier components at reciprocal lattice vectors     as

• Since the potential is real                 
• For             the Fourier component              is the average of the potential 

which we set to zero 
• Construct  eigenstate        from plane wave states                   (which form a 

complete set of basis vectors obeying periodic boundary conditions) giving            
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Electrons in a periodic potential

• Apply the Hamiltonian                                                 to                             
obtaining

• where                            . The potential energy term can be re-written as

since the summation is over all possible values of           . We can now write

• Since                   form an orthogonal set of functions the coefficient of each 
term in the sum must vanish and we get the eigenvalue equation:
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Electrons in a periodic potential
• From the last slide
• In this equation    can be anywhere in reciprocal space
• The first Brillouin zone contains all of the useful information about k-space
• We write                    relating the general wavevector to    which lies in the 

first Brillouin zone,       is a reciprocal lattice vector
• Hence we can write
• And thus

• Finally writing                         we obtain  

• This equation can be used to specify the coefficients      which are used to 
construct the wavefunctions
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Electrons in a periodic potential - Bloch’s Theorem

• From the last slide

• This equation only involves coefficients      in which                   with      being 
general reciprocal lattice vectors   

• If we choose a value of     then the only      that feature in the equation above 
are those of the form         and these specify the wavefunction

• Hence for each distinct value of      there is a wavefunction

• Which can be written

• Where              is built from the periodic function           and must have the 
same periodicity as the lattice

• Bloch’s theorem: “Eigenstates of the 1D Hamiltonian can be chosen as a 
plane wave multiplied by a function with the periodicity of the Bravais lattice” 
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Bloch’s theorem
• We now join this all up and apply it to electrons subject to a periodic 

potential
• The energy eigenstates of electrons in a lattice:  

where                                for all      in a Bravais lattice. 
• The          can be chosen so that 

• Note that potential is periodic and         plane wave x periodic function
• is the band index – necessary because there may be several distinct 

eigenstates of       with the same  symmetry label
• Or, alternatively if we apply a translation                     then we obtain

QCMP Lent/Easter 2021 6.16

2ˆ
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Bloch’s Theorem

• Bloch states (plane wave x periodic function) are similar to eigenstates of 
free electrons (just plane waves), but the choice of periodic function gives 
additional freedom in labelling states. 

• Remember that        is periodic with same periodicity as the Bravais lattice 
(follows from definition of reciprocal lattice vectors     ). 

• We can use this to relabel a Bloch state     with a different wavevector
by introducing a different periodic function                           : 

• The               labels are called band indices. In this case, there are two 
different states                       labelled with the same       vector, but 
belonging to different bands                                                     

• For every state labelled with a     vector outside the first Brillouin zone, there 
is an identical state which can be labelled with a vector                   inside the 
first Brillouin zone. 

• Corollary: any quantity that depends on the wavefunction, in particular 
energy, is periodic in wavevector space. 
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Summary of Lecture 6
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• Lattice dynamics and phonons – density of states, 
• Einstein and Debye models of lattice specific heat capacity
• Comparison with experimental results
• Electrons in a periodic potential, 
• Bloch’s theorem
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Quantum Condensed Matter Physics

1. Classical and Semi-classical  models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)
Types of bonding; Van der Waals, ionic, covalent. Crystal structures. 
Reciprocal space, x-ray diffraction and Brillouin zones. Lattice 
dynamics and phonons; 1D monoatomic and diatomic chains, 3D 
crystals. Heat capacity due to lattice vibrations; Einstein and Debye 
models. Thermal conductivity of insulators. Electrons in a periodic 
potential; Bloch’s theorem. Nearly free electron approximation; plane 
waves and bandgaps. Tight binding approximation; linear combination 
of atomic orbitals, linear chain and three dimensions, two bands. 
Pseudopotentials.. ……….

3. Experimental probes of band structure (4L)
4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)
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Nearly Free Electron Approximation
• To find approximate single electron states in a periodic potential by 

hybridising nearly degenerate plane wave states
• Recall that the single-electron state was obtained from plane wave 

expansion  
• If the lattice potential is weak compared to kinetic energy the eigenstates are 

constructed from       plus a small number of lattice harmonics states              
• we use second order perturbation theory to calculate the degree of 

admixture of the harmonic states. The energy shift due to admixing              
is given by 

• is the Fourier component of the lattice potential at reciprocal lattice 
vector      given by 

• This energy shift and the associated admixture of lattice harmonics is largest 
when the states are nearly degenerate so

• To work out the perturbed energy levels we use the equation from above 

• restricting      vectors to those linking nearly degenerate states with
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• Left multiplying by       and              with                                                                     

and                                           for a real potential we obtain     

• A special case of equation from above:

Nearly Free Electron approximation
• One-dimensional chain
• States       and                                     

are nearly degenerate
• Potential      admixes              with
•
• admixes other states,  but further 

away in energy so less important
• Apply Hamiltonian using 
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Nearly Free Electron approximation
• From the last slide if we set             and rearrange 

• Which gives a symmetrical splitting of levels about 
the free electron value where                   cross 
close to the Brillouin zone boundary at

• At the zone boundary the Bloch states are formed  
from either the sum of or difference between the 
two unperturbed states 

• Both sum and difference wavefunctions are 
standing waves, in one case nodes are located 
near atomic cores in the other between them.
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Nearly Free Electron approximation
• Another approach - start from an equation with reciprocal space periodicity 

built in:

• is in the first Brillouin zone and is obtained from    by subtracting      if 
necessary 

• If the potential is zero then                                      and we obtain a set of 
parabolic bands with energies given by 

• Introduce a small periodic perturbation
• Perturbation only important for momenta where we have degenerate states, 

for example              at                   and from the equation above       
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Nearly Free Electron approximation
• The solution of this equation is

• And at                  the energy levels are                                              
• By differentiating              with respect to      and evaluating at                  we 

find that                      so the constant energy surfaces are perpendicular to 
the Bragg plane.

• Assuming an attractive potential so                  then we find (          constants)

• Which implies that for the lower energy state the electron density is highest 
at                                                 corresponding to the ionic core  “s-type”

• The upper energy state has the highest electron density between ionic cores 
at values of                                              “p-type”
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Nearly Free Electron approximation – real space
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Nearly Free Electron 
approximation - reciprocal 

space
• (a) and (b) show free electron 

parabolas
• (c) introduces distortion due to a 

Bragg plane splitting the 
degeneracy

• (d) the parts of (c) corresponding to 
the original free electron parabola

• (e)  the effect of the additional 
Bragg planes on the free electron 
parabola – extended zone scheme

• (f) as (e) but reduced zone scheme
• (g) as (f) repeated zone scheme
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NFE approximation: calculations for 
3D metals

• Top figure energy vs             for              
within first Brillouin zone

• Energy contours circular near bottom of 
band but distort as band approaches 
Brillouin zone boundary (BZB)

• Near top of band they enclose corners of 
Brillouin zone

• Bottom figure equal energy surface in 3D 
reciprocal space

• Shape of surface shows energy is 
periodic in reciprocal space

• Bloch’s theorem: for every             there 
is an identical state          so       is 
periodic in reciprocal space 

• Equal energy surface intersects BZB at 
right angles – hybridisation and band 
distortion strongest 
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Tight Binding – Linear combination of atomic orbitals

• Builds up wavefunctions in the solid from wavefunctions of individual atoms
• Diatomic molecule – for identical atoms                                where     is the 

kinetic energy and           are the (identical) potentials on the two atoms
• Basis set is two states               that satisfy

• With       as the eigenenergy of the atomic state
• We look for solutions                                 , substitute into                          and 

premultiply by
• Define                                                                               - shift of the atomic 

energy  of atom by the crystal potential of the other atoms
• Define                                                   the hopping matrix element coupling 

the two atomic states together – the sign depends on the orbital symmetry 
e.g for two s-states with an attractive potential             then            but for two 
px-states with atoms aligned along x then 

• We obtain simultaneous equations:               
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Tight Binding – Linear combination of atomic orbitals

• For           the eigenstates are:

• For the lower energy (bonding state) the electron density has a maximum 
between the atoms. For the higher energy (antibonding state) the electron 
density has a node between the atoms

• We next consider what happens when we bring together more atoms in a 
linear chain
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• The 1s band of a ring of 20 
hydrogen atoms

• The one electron energies 
are calculated in the tight-
binding approximation using 
nearest neighbour overlap 
integrals

(From Kittel)



Tight binding – Linear chain
• Generalising this approach to a linear chain of atoms subject to periodic 

boundary conditions
• Bloch’s theorem dictates that a wavefunction using one orbital per unit cell 

must be of the form
• are the position and orbital of atom      
• We check        obeys Bloch’s Theorem using                                  which will        

map                            onto                              where

• Applying the translation operator to

• So        obeys Bloch’s Theorem
• We apply  the Hamiltonian      to        and left multiply by       to find an 

equation for the dispersion
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Tight binding – Linear chain
• From last slide
• Neglect matrix elements between orbitals not next to each other
• Define  ‘transfer integrals’                                    and
• Hence                    and we obtain for the energy dispersion relation

• Diagram shows eigenvalues confined to a band of energy centred on      
where we assume           - applies to s-orbitals

• The weaker the wavefunction overlap the narrower the band
• Because we apply periodic boundary conditions the allowed values of    are 

discrete but close together spaced by                        where
• If     is very large the energies form a continuous band  
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Ĥ n 1t t n∗ = = + 0
ˆE n H n=

( )0 2 coskE E t ka= +

0E

k
2k Lπ∆ = / L Na=

0t <

N

Note – some 
textbooks will 
define:
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Tight binding – three dimensions
• To extend to three dimensions again use                                  but extend the 

sum over all atoms in the 3D solid
• The dispersion                                              now contains contributions from 

nearest neighbour interactions in all three directions
• Assume  that                        if atom n is not a nearest neighbour to atom   . 
• If atom    is a nearest neighbour to atom    then 
• For simple cubic crystal then
• Hence  summing over all values of
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Tight binding - 3D simple cubic crystal
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• Three dimensional constant energy surface in reciprocal space 
• Calculated using tight binding for a single orbital per atom in a simple cubic 

lattice

• For FCC and BCC lattice bands calculated by tight binding see problem 2.4



Summary of Lecture 7
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• Nearly free electron approximation, 
• Splitting of energy levels due to periodic potential
• Real space potential and wavefunctions, 
• Reciprocal space band structure, 
• Calculations for 3D metals 
• Tight binding approximation – Linear combination of atomic 

orbitals
• Linear chain
• Three dimensional cubic crystal
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Quantum Condensed Matter Physics

1. Classical and Semi-classical  models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)

………. Nearly free electron approximation; plane waves and 
bandgaps. Tight binding approximation; linear combination of atomic 
orbitals, linear chain and three dimensions, two bands. 
Pseudopotentials. Band structure of real materials; properties of  
metals (aluminium and copper) and semiconductors.

Semi-classical model of electron dynamics in bands; Bloch 
oscillations, effective mass, density of states, electrons and holes in 
semiconductors

3. Experimental probes of band structure (4L)
4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)
6. Fermi Liquids (2L)
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Tight binding – number of orbitals per atom

• To now we have calculated Bloch states with a single orbital for each atom –
this only gives a single energy band

• The  number of orbitals in the band that correspond to a non-degenerate 
atomic level is        for     atoms  - explained below

• Values of     within the first Brillouin zone define independent wavefunctions
• The simple cubic Brillouin zone has                                  etc and the volume 

in k-space is                  
• The number of orbitals (counting both spin orientations) per unit volume of k-

space is               where     is the volume of the crystal
• Hence the number of orbitals is
• Since     is the volume of the crystal   and            the number of atoms per 

unit volume the number of atoms                    
• Hence the number of orbitals is twice the number of atoms
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Tight binding – two bands
• To understand many materials we must extend this method so it produces 

several bands – we need to build Bloch states from several orbitals per site.
• We combine two orbitals               to form a hybridised local orbital and 

combine these to form a Bloch state  - coefficients              can depend on

• Inserting         into Schrodinger equation                           left multiplying by 
basis states                   and turning  into eigenvector problem we obtain

• is the dispersion of a band formed exclusively  
from atomic orbitals         

• is dispersion of a band formed from       orbitals 
• The off-diagional matrix elements:                                               and with 

some relabelling 
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Tight binding – two bands
• The eigenvalue problem gives rise to two possible energies at each 

wavevector – forming two bands from two orbitals
• The effect of the off-diagonal elements is to hybridise the two bands (formed 

from each set of atomic orbitals) where they become nearly degenerate.
• We could have approached this problem by forming two Bloch states, one  

from each set of atomic orbitals

• Then combining the Bloch states using                                             we obtain 
the same form  as above for

• So the two routes are the same – (1) bandstructure arising from hopping 
between hybridised molecular orbitals or (2) hybridisation between bands 
arising from atomic orbitals 

• To extend to multiple orbitals per unit cell we generalise the summation:

• Where     labels the different orbitals        which exist in the      unit cell and      
.    is the associated coefficient determining the level of mixing of the orbital

• The number of bands is equal to the number of local orbitals per unit cell
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Tight Binding versus Nearly Free Electron approximation
• Tight Binding (TB) and nearly free electron (NFE) approx. do similar things:
• Both construct a Bloch state from a reduced set of basis functions 
• Coefficients found by solving eigenvector/eigenvalue equation
• NFE basis set is selected from plane wave states               for which matrix 

elements      are large and which are nearly degenerate with
• For smooth potential we disregard high      Fourier components - set of basis 

functions is small. Computers  can use large plane wave basis sets.
• In the NFE approximation kinetic energy appears on diagonal of energy 

matrix and potential on off-diagonal terms – very efficient if potential is weak.
• TB allows reasonable answers with relatively little computation
• Atomic orbital states associated with different unit cells of crystal form a 

complete basis set in which Bloch states can be expanded
• Number of bands equals the number of atomic orbitals used per unit cell
• If the hopping matrix elements are less than separation between bands then 

bands do not cross – strength of the potential is larger than kinetic energy
• In TB potential energy appears on diagonal. Hopping elements – equivalent 

of kinetic energy, form off-diagonal terms  
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Pseudopotentials
• The NFE and TB methods are not accurate predictors of band structure
• Commonly used to form simple models with parameters determined by 

experiment or more complex calculations
• Band gaps in semiconductors often small – only a few Fourier components 

of potential required because effective scattering potential for valence 
electrons is much smaller than full atomic potential

• Effective potential called pseudopotential which reproduces valence states 
as lowest eigenstates of problem – we can forget about core states.
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• The true potential            has a wavefunction
for valence electrons           that oscillates 
near the core

• Pseudopotential           has a wavefunction
.          that is smooth near the core

• Pseudo potential wavefunction approximates 
wavefunction far from core

• Very successful empirical pseudopotential 
method - band structure calculated using a 
few      obtained from fits to measurement of 
optical reflectance and absorption
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Band structures of real materials
• Band gaps arise because of interference between forward and backward 

going degenerate plane waves mixing to form standing waves
• Band gap in 3D arises from splitting of degeneracy due to scattering from 

Fourier component of lattice potential so we require                                     
for a given      we find the     so

• Satisfied by any    lying in a plane perpendicular to and bisecting
• This is the boundary of a Brillouin zone and the Bragg scattering condition
• Energy eigenstates form discrete bands             which are continuous 

functions of momentum     and labelled by a band index
• Bandstructure is periodic in  reciprocal lattice
• Eigenstates are in form given by Bloch’s theorem                                    

which continues to hold if                       so    can always be chosen in the 
first Brillouin zone 

• is ‘crystal momentum’, enters conservation laws for scattering processes 
e.g., if an electron absorbs the momentum of a phonon of wavevector , the 
final state will have a Bloch wavevector where     is the 
reciprocal lattice vector necessary to keep     inside the first Brillouin zone   
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Band structures of real materials

• The spacing between   -points in 1D is              where    is the linear 
dimension of the crystal. Generalising to 3D, the volume associated with 
each    -value is:                                  with     the volume of the crystal. 

• Within each Brillouin zone  the number of    -states allowed by periodic 
boundary conditions equals the number of unit cells in the crystal.

• This is so large bands are continuous and we use the density of states
• Electrons are fermions so each    -point is occupied by two            electrons
• In a system with one electron per unit cell (e.g. lattice of sodium atoms) half 

the states will be filled in the first Brillouin zone – hence a metal
• With a system with two electrons per unit cell the first Brillouin zone will be 

filled meaning that it may be an insulator if the band gap is large enough, but 
if the Fermi energy lies within a band the material will be a metal.

• If bands overlap so there are 2 or more partially filled bands we have a metal
• When the energy between electrons due to Coulomb repulsion is larger than 

the bandwidth then materials can be ‘Mott insulators’. They can undergo a 
metal to insulator transition if electron density or temperature changes.
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• A shorthand is used to label 
points in k-space

• Diagram shows 1st Brillouin 
zone for several crystal 
lattices with labelled points

• The zone centre   
• Example: for FCC the X point              

.                etc is at the zone 
edge in 6           directions 

• L is on the zone boundary at                  
.             in 8          directions

• K is at zone edge in           
direction 

• W is at square/hexagon 
intersection  

Band structures of real materials - notation
• The bandstructure defines a 3D function which is difficult to visualise
• By convention, cuts through this function are plotted along particular 

directions in k-space
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Examples of band structures - Metals

QCMP Lent/Easter 2021 

• In other cases (e.g. Cu 3d104s1) the sphere 
extends in some directions to meet the Brillouin 
zone boundary surface. There can be situations 
where several bands are cut by the Fermi 
energy, and the topology of Fermi surfaces is 
sometimes complicated – studied by de Hass -
Van Alphen effect.

• Even with the right number of electrons to fill bands and make a 
semiconductor, the bands may still overlap. Consequently, the fermi surface 
will intersect more than one band, making a pocket of electrons in one band 
and removing a pocket of electrons from the band below (making holes). 
This accounts for the metallicity of  Ca and Mg and  (which have two 
electrons per unit cell), and also As, Sb, Bi,. These are known as semimetals 

• With an odd number of electrons per primitive unit cell, chemical potential 
must lie within a band, hence no energy gap. Because low-energy electronic 
excitations are possible, the system is a metal.

• In a simple metal such as  Na (3s1 with 1 valence electron) or  Al (3s23p1 with 
3 valence electrons) Fermi surface is close to a free-electron sphere

Fermi 
surface of 
copper
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Aluminium band structure
• Has three valence electrons in configuration
• FCC crystal structure hence BCC reciprocal lattice – shown below
• First Brillouin zone full, valence electrons spread into 2nd,3rd and 4th

• Band structure close to free electron parabola except when near Brillouin 
zone boundaries, bands fill up to Fermi level

• No clear band gap in all the directions - hence a metal
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Aluminium band structure
• Transitions from filled states below      to empty states above 
• Fermi’s golden rule states density of states determines                     

transition rates - depends on both initial and final density of states
• High density of states for parallel bands - Hence reflectivity dip at 
• Band structure suggests  transitions possible over range of energies          

not parallel bands so less significant but does reduce reflectivity
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Copper band structure

• 3d tightly bound, narrow band, high DoS, full – 10 electrons
• 4s free electron like, lower DoS, broader band - 1 electron
• Fermi surface in the 4s band and above 3d band
• Transitions possible - filled 3d to 4s states above EF

• Well defined threshold for transitions about 2eV
• Reflectivity above 2eV reduced due to interband absorption 

well below plasma frequency at 10.8eV
• Reflectivity falls in visible part of spectrum – hence colour
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Semiconductors 
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Γ

Γ

Si

• If there is an even number of 
electrons per unit cell, it is possible 
(with no band overlap) for all of the 
occupied states to fill bands, with an 
energy gap to the empty states. 

• The system will be a semiconductor 
or insulator – the case for the group 
IV elements, C, Si, Ge as well as III-
V compounds such as GaAs, InP.

• These semiconductors have 2 atoms 
per unit cell (diamond or zincblende
structure) and 8 valence electrons 
per unit cell — 4 filled bands. 

• Maximum in valance band for both 
Si and GaAs is at     .

• Minimum in conduction band is also 
at    for GaAs (direct bandgap) but is 
at     for Si (indirect bandgap). 
Bandgap shown in blue   

GaAs

X



Summary of Lecture 8
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• Tight binding - number of orbitals, 
• Tight binding - two bands, 
• Tight binding versus nearly free electron approximations
• Pseudopotentials
• Bandstructure of real materials 
• Metals, semi-metals
• Example - Aluminium 
• Example - Copper
• Example – Si and GaAs Semiconductors
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Quantum Condensed Matter Physics
Lecture 8

The end
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