Quantum Condensed Matter Physics
Lecture 1
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Quantum Condensed Matter Physics: synopsis (1)

1. Classical and Semi-classical models for electrons in solids (3L)

Lorentz dipole oscillator, optical properties of insulators. Drude model and optical
properties of metals, plasma oscillations. Semi-classical approach to electron
transport in electric and magnetic fields, the Hall effect. Sommerfeld model, density
of states, specific heat of; electrons in metals, liquid 3He/*He mixtures. Screening
and the Thomas-Fermi approximation.

2. Electrons and phonons in periodic solids (6L)

Types of bonding; Van der Waals, ionic, covalent. Crystal structures. Reciprocal
space, x-ray diffraction and Brillouin zones. Lattice dynamics and phonons; 1D
monoatomic and diatomic chains, 3D crystals. Heat capacity due to lattice
vibrations; Einstein and Debye models. Thermal conductivity of insulators. Electrons
in a periodic potential; Bloch’s theorem. Nearly free electron approximation; plane
waves and bandgaps. Tight binding approximation; linear combination of atomic
orbitals, linear chain and three dimensions, two bands. Pseudopotentials. Band
structure of real materials; properties of metals (aluminium and copper) and
semiconductors.

Semi-classical model of electron dynamics in bands; Bloch oscillations, effective
mass, density of states, electrons and holes in semiconductors
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Quantum Condensed Matter Physics: synopsis (2)

3. Experimental probes of band structure (4L)

Photon absorption; transition rates, experimental arrangement for absorption
spectroscopy, direct and indirect semiconductors, excitons. Quantum oscillations;
de Haas-Van Alphen effect in copper and strontium ruthenate. Photoemission; angle
resolved photoemission spectroscopy (ARPES) in GaAs and strontium ruthenate.
Tunnelling; scanning tunnelling microscopy. Cyclotron resonance.

Scattering in metals; Wiedemann-Franz law, theory of electrical and thermal
transport, Matthiessen’s rule, emission and absorption of phonons. Experiments
demonstrating electron-phonon and electron—electron scattering at low
temperatures.
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Quantum Condensed Matter Physics: synopsis (3)

4. Semiconductors and semiconductor devices (5L)

Intrinsic semiconductors, law of mass action, doping in semiconductors, impurity
ionisation, variation of carrier concentration and mobility with temperature - impurity
and phonon scattering, Hall effect with two carrier types.

Metal to semiconductor contact. P-n junction; charge redistribution, band bending
and equilibrium, balance of currents, voltage bias. Light emitting diodes; GaN,
organic.

Photovoltaic solar cell; Shockley-Queisser limit, efficiencies, commercialisation. Field
effect transistor; JFET, MOSFET. Microelectronics and the integrated circuit.

Band structure engineering; electron beam lithography, molecular beam epitaxy.
Two-dimensional electron gas, Shubnikov-de Haas oscillations, quantum Hall effect,
conductance quantisation in 1D. Single electron pumping and current quantisation,
single and entangled-photon emission, quantum cascade laser.
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Quantum Condensed Matter Physics: synopsis (4)
5. Electronic instabilities (2L)

The Peierls transition, charge density waves, magnetism, local magnetic moments,
Curie Law. Types of magnetic interactions; direct exchange, Heisenberg
hamiltonian, superexchange and insulating ferromagnets, band magnetism in
metals, local moment magnetism in metals, indirect exchange, magnetic order and
the Weiss exchange field.

6. Fermi Liquids (2L)

Fermi liquid theory; the problem with the Fermi gas. Liquid Helium; specific heat
and viscosity. Collective excitations, adiabatic continuity, total energy expansion for
Landau Fermi liquid, energy dependence of quasiparticle scattering rate.

Quasiparticles and holes near the Fermi surface, quasiparticle spectral function,
tuning of the quasiparticle interaction, heavy fermions, renormalised band picture
for heavy fermions, quasiparticles detected by dHVA, tuning the quasiparticle
interaction. CePd,Si, ; heavy-fermion magnet to unconventional superconductor
phase transitions.

*Course material will be useful for several part Ill courses.
*Printed overheads & problem sheets provided.
All available in pdf on web: http://www.sp.phy.cam.ac.uk/drp2/home
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Books

1. Band Theory and Electronic Properties of Solids,
Singleton J (OUP 2008)

2. Optical properties of Solids, Fox M
(2" edn OUP 2010)

3. The Oxford Solid State Basics, Simon S H
(OUP 2013)

SOLID STATE
PHYSICS

4. Introduction to Solid State Physics, Kittel C
(8th edn Wiley 1996)

5. Solid State Physics, Ashcroft N W and Mermin N D,
(Holt, Rinehart and Winston 1976)

SOLID STATE PHYSICS
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Quantum Condensed Matter Physics

1. Classical and Semi-classical models for electrons in solids (3L)

Lorentz dipole oscillator, optical properties of insulators. Drude model
and optical properties of metals, plasma oscillations. Semi-classical
approach to electron transport in electric and magnetic fields, the Hall
effect. Sommerfeld model, density of states, specific heat of; electrons
in metals, liquid 3He/*He mixtures. Screening and the Thomas-Fermi
approximation.

2. Electrons and phonons in periodic solids (6L)

3. Experimental probes of band structure (4L)

4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)

6. Fermi Liquids (2L)

QCMP Lent/Easter 2021 1.7



Optical properties of insulators

Response to high frequency electric field in electromagnetic waves.
Wavelength long compared to interatomic spacing.

Classical picture — Lorentz dipole oscillator model

No EM wave

electron cloud

N\

—7—

nucleus

EM wave — electron cloud
oscillates about nucleus

displacement u.

QCMP Lent/Easter 2021

Model atoms as nucleus + electron cloud.
Applied electric field causes displacement of electron cloud,

Assume restoring force is proportional to displacement.




Optical properties of insulators

* Electron cloud behaves as damped harmonic oscillator
mii +myi +mou = qgE
* wq natural frequency, determined by force constant and mass; p damping
rate (no model for this yet...)
- Consider oscillating electric field E(t) = E_e™™, which induces oscillating
displacement u(t)=u_ e
* Resulting dipole moment per atom at angular frequency w;: p_ =qu,
« Polarisation = dipole moment per unit volume
P=p N/V=np,

« From P =¢,x, E_ andthe equation of motion we obtain for the
polarisability:

g =N q’ _ q’
CVme (0 -0 —ivy)  me(w; -0 —iwy)
* Frequency dependence of y,, typical of harmonic oscillator
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Optical properties of insulators
Permittivity from model: q
Figure shows typical € =147, =1+n
frequency dependence

Analogy with damped SHO
tells us that power absorbed
by electron cloud is

determined by Im(€,,):
P=1we, |E, |" Im(e,)
Simple way to think of

absorption lines in optical
spectra \
At low frequencies: .

0 O
Frequency

2

me,(w; — " —iwy)

Im(e)

Re(g)

Permittivity €

o =

e(a) —> O) = 1+nq2/meoa)ﬁ
Explains why different materials have very different static permittivities
Reflectivity between media of different permittivities: r = Jarde

. o 2 Ja+e
Power reflection coefficient given by: R = |r|
In a solid polarization fields of other atoms can alter resonant frequency

QCMP Lent/Easter 2021 1.10



Example — atomic absorption line

« Absorption coefficient «and

refractive index n of sodium o t /
gas

. Atom density is 1x10'm™

* n,is the off resonance
refractive index 0

« Absorption due strongest ) ?

hyperfine component of the SN R i
D2 line at A =589nm /\ I 3.95 % 105
so v =5.1x10"Hz o= 1 -
e Linewidth Av = 100MHz \/’
hence Av/v=2x10" |
* Very narrow.....

Av (MHz)

Taken from Optical properties of solids by M Fox
QCMP Lent/Easter 2021 1.1



Lorentz oscillator model: connection to quantum mechanics

« This classical oscillator model cannot be the whole story — works as a
phenomenological description of optical response function

« For two sharp levels, from time-| |- o> )
dependent perturbation theory T M MM
X, < (E,—E,—hw)" +iS(E,—E, ~ho) | | nuy | N
«  Where the imaginary part is the atome levels
transition rate Absorption Absorption
« This can also be written line peak
Za) x Eb—Ea—%w—ihy/Z T /\
where y is very small W, w o, w

* As energy levels broaden into bands and y increases, this expression
becomes similar to Lorentz model close to resonance where iiw, = E, — E_

«  We multiply by @, + @ on top and bottom and approximate: @, + ® = 2,

hence:
enee @, + 20,

oC =~
Ko w; -0’ —i(w, +0)y/2 -’ -ioy
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Optical properties of insulators

Lorentz oscillator model, superposition of spectra
May have a number of allowed transitions at energies ha)T1 ...... l*on2
Usually high frequency — terahertz to ultraviolet

Resulting frequency-dependent permittivity from adding responses
associated with each transition:  ¢(@) =1+ Z 7, (o)

Permittivity
mm

Frequency
QCMP Lent/Easter 2021 1.13



Optical properties of insulators — comparison with

experiments
 Fused silica glass SiO, S
« Expected general 3 SiO, glass (a)
characteristics observed g [ /
« Transparent in visible light % , L
 Strong absorption peaks in g |
infrared and ultraviolet 5
- IR peaks due to vibrations of s
SiO, molecules -
« UV absorption background i ' B e
(b)

across 10eV bandgap 1

: i E
» UV absorption peaks caused ¢ ., ]
by inner core electron g
g . . W 10~
transitions in Si and O : Visible
% 10~ light
£
For We_akly n=~ RG(E) % 10~ Infra-red Ultra-
absorbing (05 violet  x_ray
medlum Wlth Im(E) AT R R TRt A RTINS RTINS NI B A NI I
n> K K~ 1012 1013 1014 1015 1016 1017
2n Frequency (Hz)

QCMP Lent/Easter 2021 Optical properties of Solids, M Fox 1.14



Dispersion of light

Wavelength (nm)

SiO, refractive index in more detail 1000 600 400 300 200
n increases with frequency — ‘normal IR visible  ultaviolet '

dispersion’ caused by tails of
absorption peaks in IR and UV

Can be used to separate colours of
light using a prism

Short light pulses of duration have
spread of frequencies O f = l/t

Different velocities of frequency L . L
components causes problems in high 02 04 06 08 1.0 12 14

1.55] Optical properties of Solids, M Fox

Refractive index, n
g [ —
N
=
T

Si0, glass

speed optical fibre communications Pl’eg“e“cy (10 Hz)
Temporal broadening of pulse of spectral A, =] |Z= Adn AL
width A4 in a dispersive medium length L ¢ dA’
Lorentz model gives d*n/dA* <0 above one |
white red

absorption line and d°n/dA* > 0 below next
absorption line

Choosing d’n/dA° =0 we minimise dispersion

blue

For SiO, thisis at A =1.3um — a preferred optical fibre wavelength

QCMP Lent/Easter 2021 1.15



Drude Model

« Assume we have a gas of
electrons free to move between
positive ion cores

* These electrons are only scattered
by the ion cores

« Between collisions with the ion
cores the electrons do not interact
with each other.

« Collisions are instantaneous
resulting in a change of electron
velocity.

« The probability an electron has a
collision in unit time is 77", the
scattering rate.

» Electrons achieve thermal
equilibrium with their surroundings
only through collisions.

taken from wikipedia

QCMP Lent/Easter 2021 1.16



Drude Model - relaxation time approximation

The current density J due to electrons of number density n, mass m, of
average velocity v and momentum p is given by:

ne
J=—nev=——mp
m

Consider the evolution of p in time Ot under the action of an external
force f(t)

Probability of a collision during ot is ot/ 7 where 7 is the average time
between collisions.

Probability of no collision during ot is 1 -0t/
For electrons that have not collided momentum increases:
Sp =£(t)ot + O(6¢)°
So the contribution to the average momentum during ot for electrons that
have not collided is:

p(t+6t) = 1=t/ ) (p(t) +£(1)Ot + O(61)%)

QCMP Lent/Easter 2021 1.17



Drude Model - relaxation time approximation

Electrons which have collided are a fraction ot/ 7 of the total.

The momentum they will have acquired since colliding (where their
momentum was randomised) is ~ f(¢)ot

So contrlbutlon to average momentum for electrons which have collided is
of order (Ot)*- small

For momentum as before:
p(t+6t)=(1-5t/7)p@)+£()5t +O0(51)%)
If ot — 0 we can rearrange this to give

dp() _ p(®)
dzs T o)

Hence the collisions produce frictional damping.

Apply to electrical conductivity o defined by J = oK , assume steady

state so: Y = () and the force on an electronis f(¢) = —E

From above J =—2p
2

Hence
f(t)_ﬁ_—ﬂJz—eEzmz e

netr m
QCMP Lent/Easter 2021 1.18




Summary of Lecture 1

* Introduction to course and recommended text books

» Lorentz oscillator model for optical absorption in solids
« Comparison with atomic absorption

» Comparison of Lorentz model with experimental results
* The Drude model of electron motion in solids

* The relaxation time approximation, scattering and electrical
conductivity

QCMP Lent/Easter 2021 1.19



Quantum Condensed Matter Physics

QCMP Lent/Easter 2021
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Quantum Condensed Matter Physics

Lecture 2
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Quantum Condensed Matter Physics

1. Classical and Semi-classical models for electrons in solids (3L)

Lorentz dipole oscillator, optical properties of insulators. Drude model
and optical properties of metals, plasma oscillations. Semi-classical
approach to electron transport in electric and magnetic fields, the Hall
effect. Sommerfeld model, density of states, specific heat of; electrons
in metals, liquid 3He/*He mixtures. Screening and the Thomas-Fermi
approximation.

2. Electrons and phonons in periodic solids (6L)

3. Experimental probes of band structure (4L)

4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)

6. Fermi Liquids (2L)

QCMP Lent/Easter 2021 2.2



Drude model

dp() _ p(@)
dt T

* From above:

+£(2)

* In magnetic and electric fields: f = q(E + VXB) and j=nqgv
* Hence the same equation in different forms:

M——ﬁ+q(E+VxB)

drt T
dvir) __v() | 4 (E+vxB)
dr T m
o . 2
dj() _ )  nq (E+vxB)
dr T m
o . 2
dj() _ _i0)  ng’E + 4 (jxB)
dr T m m

QCMP Lent/Easter 2021
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Drude model: Frequency dependant conductivity

* From above

dt
° L4 2
T m

. . 2
dj(t):_j(t)_l_nq E+ q(ij)
T m m

« If B=0:

ng’E,  nq’tE,

m(z'_1 —ia)) - m(l—ia)r)

 Then (Z'_l —ia))jw :%Ew =j, =

2 2
o ng’r E T
- And given j=oE we have o, = 1 = L
2

m(l—ior) - (1-iwr)
ng

« Where a)i = —— defines the Plasma frequency.
me,
nqzr qrt
sy HU=—""=>0, =nqu
m m

* Atlow frequencies @7 <1 we get o, =

 Where u is defined as the carrier mobility

QCMP Lent/Easter 2021 24



Optical properties of metals: connection to ac
conductivity

Current density j=ung (velocity x density x charge)

Polarisation P = nug Hence, PC = j for the conduction electrons
Adding in the polarisation of the core electrons as ¥, - the background
polarisability we get: P=j+e E

At angular frequency @, substituting:

E=E_ exp(-iot),j=], exp(—iwt),P =P exp(—iwt),P, =€,x E
We get j, =—iow(e, y E, —€x E, )=—iwe,E (¥, —x.)=0,E_
Hence

0

: : 10
o, =—iwe,(¥,—X.) O,=—lwe, (e, —€,)=>€, = ) a“; +€,
0

This relates the imaginary part of the permittivity to the real part of the
frequency dependant conductivity.
Combining this with our expression o = 6‘0(0;2'(1 — ia)z')_lfrom above we
obtain: i’ T >

€ =€ + z =€ — “

[0} o0

) .
a)(l—za)r) T oo +iwl T
QCMP Lent/Easter 2021 2.5



Optical properties of metals

« Use Lorentz oscillator model for bound electrons giving background €_
« Use Drude model for conduction electrons, zero restoring force = W = 0

2
n
Ao = 2 ! 2 . , 0p =0, Im{e) R ;
me,(w;, — " —iwy) Drude Peak esonance due

o «— to core electrons
2 >
n =
—>€, =€, — 2q =
me, (" +iwy) E
’ g

o
T

2 2

@, 2 _ Nnq

0 7 ,» W, =——
. p

(0" +iwy) me,

=€

Frequency

- |e(w) |diverges as w — 0 so metals are highly reflecting at low frequency

+ Peakin Im(e, ) at low w, due to enhanced absorption, ‘Drude peak’:

- €(w) crosses zero at a); and approaches 1 at a high frequency so metals

become transparent in the ultraviolet.

QCMP Lent/Easter 2021 2.6



Optical properties of metals

« Reflectivity at the interface between two media using the Drude model

« If permeability is unchanged at interface: / /6
. - 2 2
« Power reflection coefficient R = |r|
1 . - \/ \/ 62

background permittivity ¢, = 1

Power reflection coefficient R

0 o, ®p
Frequency
« Plateau in R at low frequency, related to conductivity of material
- Rxw” at high frequency — blue line on figure
* If background permittivity € - due to polarisability of core electrons is

significant, R can go to zero at finite frequency — red line
QCMP Lent/Easter 2021



Experimental reflectivity of Aluminium

Experimental Reflectivity of
Aluminium as a function of photon
energy - green curve, (solid)

Reflectivity above 80% for visible
region of spectrum - aluminium
coating is used for commercial
mirrors

Plasma frequency in ultra-violet

Both theory curves assume we
have ho, =15.8eV

Red (dashed) no damping

Reflectivitiy
©c o0 o o o =
o N b~ OO 0O O

Reflectivity of Aluminium

Theory

i
Experimental data

5 10 15 20
Energy (eV)

Data from Ehrenreich et al (1963)

Blue (Dotted) with 7 = 8.0x10™" s value deduced from DC conductivity

values - slightly better fit

Two unexplained features in experimental results: (1) reflectivity is smaller
than predicted (2) small dip in reflectivity around 1.5¢V

Both explained by considering interband absorption rates

QCMP Lent/Easter 2021
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Optical properties of metals: plasma oscillations

Part IB electromagnetism — “Plasma Oscillations”
electrons moving in a positively charged environment - model for metal.

Consider probing a slab of material by applying an oscillating field D:

. . . -1
D " D=ccE=¢E+P=P=D(I-¢,')
-
P - g (();

> €p =€ — .
- - (0 +iwy)
o ) )

> O +1iwy

—1
€, l=>e, =————
0" -, +ioy

* Inmetals @, >y = ™" and usually €, =1so ez peaksand €, ~0

p

« More generallyas ¢, >0 at @ = a)pe;l/z we get Plasma Oscillations at a
frequency defined by a); = ne’ / me,

« Polarisation causes build-up of surface charge, which generates the
restoring force driving the oscillations. The electrons slosh back and forth.

QCMP Lent/Easter 2021 2.9



Optical properties of metals: plasma oscillations
and electron energy loss spectroscopy in Ge and Si

I_/ 1.2 ~ =i
Ge _ AV LI
qw Jf kv / ?ﬁ;:;i:ﬁﬁ:t.c AR
\/\./\./\.r-bi‘ 1.0F . ". Snfrgyfr-lnss '\‘ 1.6
{'\{.\ H. Dimigen '11: 14 EELS
. \
3 0 | /
q-k o—v ; .
IEW 06 1.0 $
L 0.8
* Incoming electron at 0al ;
wavevector q, energy hw. Y ——
Outgoing electron at 021 | i /
h data of o m
wavevector k, energy Av. | il
Plasmon generated with ; - 5 = 20 From optical
energy h(w — v) i) EeV) ) absorption

o’ +ioy

« Response to oscillating applied D field given by ea_)l =— SR
O -, tioy
ne> » p
Resonance at plasma frequency a); =—— width T .

QCMP Lent/Easter 2021 me, 2.10



Transport in electric and magnetic fields

Previously >~ J(t) J(t) g E q(JxB) °

dt T m m TTTT ]Zy
. . -

If B is parallel to z-axis, taking components k

(&+77)j, =%(ngE, —Bj) e,

LLLLLLLLLLL

(& +77) ), =+(ngE, + Bj,) o R
Steady state =9 L TTTTTTTTTC

=--(nqE,—Bj.), j.=1-(nqE + Bj)
Hall effect: current confined to x-axis (j, = 0) by transverse field (E ) due
to charge build up. E

|
Hall coefficient R, = e gives carrier density and sign of charge
J.B nq
f B=0then j =<-ngk, = 5% =7=1-=p carrier ‘mobility

Mobility defined as veIOC|ty of charge carrier per unit electric field.
since j=oE=>o0=" i =nqu
Cyclotron frequency defined as 0 =2=w1=uB

QCMP Lent/Easter 2021 2.11



Hall effect in metals

First measured 1879 E H Hall R Liick, Phys Stat. Sol. 18, 49(1966)
From the last slide R, =1/ ng 1 Ryne aluminium
Drude theory predicts R, is \ o7 = 1B
independent of B and 7 001N\01 1.0 10 100 1000

In metals however it is found that R,
does vary with magnetic field as well

as temperature and Samp|e punty —0.33 b T
Measuring pure samples at low Metal | Valence | -I/Rne
temperatures and high magnetic Li 1 0.8
fields (1T) limiting values are Na 1 1.2
obtained. K 1 1.1
Comparison made between observed Cu 1 1.5
and predicted number of free Ag ) 1.3
electrons per atom for a range of AU : 15
metals | Be 2 0.2
Theqry seems to work quite well for Mg ) 0.4
alkali metals & noble metals but not - 3 03
for the others - new theories needed! N 3 _0'3

QCMP Lent/Easter 2021 212



Scanning Hall Probe Microscopy
* First report Chang et al Appl Phys Lett 61, 1974 (1992)
» Hall sensor mounted on scanning system to measure local magnetic field
- Magnetic field sensitivity 10™ T spatial resolution 0.35um
« Now commercial product from Attocube, Nanomagnetics, Magcam......

Hall 5TM Current

SENsor

Hall voltage

SHPM imoge of BaFel, recorded at 4.2 K in
constant height mode. The color scole spans
106 mT (black to white), while the S/N ratio of
this measurement yields 2¢10%,

SHPM image of superconducting vortices in

QCMP Lent/Easter 2021 a thin Pb film at 4 Kelvin 2.13



Problems with Drude Theory

of energy C, =3nk, independent of T.

theorem and is temperature dependent.

Measured heat capacity falls far below that expected from equipartition

=
L=
1

C,, (/K mole)

" specific

Law of Dulong and Petit

Silicon .."".;ppmanhes

Dulong-Petit
at high temp

neat

Low temperature
T2 behavior matches
Debye model

10 11]3 10 10
T3 K?)

Law of Dulong and Peatit

Copper
" specific

C =aT?
hieat W

matches
Debye

Departs from Debye

4| madel at low temp

where electron specific
heat contributes.

10 10 10° 10° 10’
T3 (K?)
aftar Rohlf

« Correct description: degenerate Fermi gas (cf. Stat. Phys. course).

» Interpret velocity u in Drude model as drift velocity, averaged over many
particles. Individual electrons actually travel at up to 1% of speed of light!

QCMP Lent/Easter 2021

Drude model predicts the electronic head capacity to be from equipartition
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Drude Model - is it valid?

« The Drude model is very crude (devised only 3 years after discovery of

electron by J J Thomson in 1897!)
— assumes electrons have random (or 0) momentum after a collision
— assumes scatterers are all the positive ions (but mean free path can be
much longer than atomic spacing)
— no concept of QM, Pauli exclusion principle, fermions, ...

« We should instead consider a Fermi sphere of electrons occupying all

the states in k-space up to the Fermi energy E.
— only two electrons in each state (two spins)
— only electrons near Fermi surface can gain energy or scatter
— Fermi-Dirac function f gives probability of finding electron in a state
— distribution function f is modified by electric field, which provides
momentum, so there are more electrons moving in one direction than in the

opposite one

Mon-equilibrium Fermi
distribution, f, due

to electric field and
surface scattering

\ P

\ )

QCMP Lent/Easter 2020 2.15



Drude model - its replacement

« Describe using Boltzmann transport formalism

(Part Il major option AQCMP)
— scattering causes total momentum to decay, same results

« Various types of scattering in metals (and semiconductors):
— phonons (dominate at room temperature T)
— impurities and lattice defects (important at low T)
— other electrons (surprisingly unimportant; total momentum
conserved so no effect on current)
— we will see that the ions themselves have no effect provided that

they are in a periodic lattice (band structure)

Mon-equilibrium Fermi
distribution, f, due

to electric field and
surface scattering

)
QCMP Lent/Easter 2020 a 2.16



Summary of Lecture 2

 The Drude model — frequency dependant conductivity

» Optical properties of metals

« Experimental reflectivity of aluminium

* Plasma oscillations, electron energy loss spectroscopy

» Hall effect from Drude model

» Hall effect in metals

» Applications of Hall effect — scanning Hall probe microscopy
* Problems with Drude theory

QCMP Lent/Easter 2021 217
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The End
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Quantum Condensed Matter Physics
Lecture 3

David Ritchie
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Quantum Condensed Matter Physics

1. Classical and Semi-classical models for electrons in solids (3L)

Lorentz dipole oscillator, optical properties of insulators. Drude model
and optical properties of metals, plasma oscillations. Semi-classical
approach to electron transport in electric and magnetic fields, the Hall
effect. Sommerfeld model, density of states, specific heat of; electrons
in metals, liquid 3He/*He mixtures. Screening and the Thomas-Fermi
approximation.

2. Electrons and phonons in periodic solids (6L)

3. Experimental probes of band structure (4L)

4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)

6. Fermi Liquids (2L)

QCMP Lent/Easter 2021 3.2



Sommerfeld Model — density of states

 Free electron gas - Schrodinger equation: —%Vzl//(l‘) = Ey(r)

* Introduce eigenstates _ L
Wy (l’) — AGXp(lk'l’), Ek =" |k| / 2m

satisfying periodic boundary conditions w(x+L,y,z) =y (x,y,z) etc.

» Allowed values of momentum are discrete: k = 2%(n,,n ,n,) where
Ny, Ny, N, are positive or negative integers

« At zero temperature
fill up Fermi sphere
to the Fermi energy E,

« Each triplet of
quantum numbers
corresponds to 2
states — electron
spin degeneracy

e volume in k-space

2z /L)

QCMP Lent/Easter 2021
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Sommerfeld Model — density of states
4/3rxk;

(27 /L)
Henceif n=N/V=N/L then k, =3r’n)"”
Also E, =1k, /2m=n*(37’n)*" /| 2m = In(E,.) = 2In(n)+const
dE. 2dn  dnm 3 n
Lot g(Ey) =5
E. 3n dE. 2 E,
Density of states

o(E)dE =2-

Number of occupied states in Fermi sphere: N =2 -

—

Volume of shell in k —space 47k’ dk

~9.
Volume of k —space per state 27) 1V

Hence

,
E)y=2 Ak’ =
s =2 Y BT

Factor of 2 for spin degeneracy

dk  V m(2mEY
_ u

Often g(E) is given per unit volume so V' disappears.

QCMP Lent/Easter 2021
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Sommerfeld Model — electronic specific heat

« Occupancy of states in thermal equilibrium — Fermi distribution:
|

J(E)= o E—)IsT
« Chemical potential T =0= u=FE,
« Number density of particles n=N/V = Zf(E) jg(E)f(E)dE
 Energy density u = ng(E)f(E) dE Ve
* Atroom temperature k,T ~ 0.025e) For metals E, = a few e} hence

k,T <FE,
E

+ From above ¢, =0u /0T |, —j Eg(E)———= 8f( )

« Since the Fermi function is a step function f( )
chemical potential oT

» Contributions to the specific heat only come from states within k,T of the
chemical potential, with each state having specific heat k£, and we can
guess that k,T

= n——k,

F 3.5

+1

Is sharply peaked at the

QCMP Lent/Easter 2021



Sommerfeld Model — electronic specific heat

» To calculate this more accurately.... We take the density of
states as a constant so

. _j Eg(E)af(E)dEzg(E)I Eﬂf)dE

» changing variables x=(E—u)/k,T = of __° — X x 1 oy
or (e +1) T kT@T

 The number of particles is conserved so
dn of (E) e’ x 1 ou
—=0=g(FE dE =g(E, )k, T dx
ar =8 )j SERT] SR {T k,T 0T
The first term in the square brackets is odd, IS even so 2? ~ ()
To the same level of accuracy:

(e +1)

of (E) e x
¢ =g(E, )jE - dE = g(E, )k, Tj (u+k, Tx)( T ;dr

2 x

=g ERT], dx=%k§Tg<EF>

QCMP Lent/Easter 2021 3.6




Sommerfeld Model — electronic specific heat

3 n
Since ¢(FE.) =———we can write
g(E,)= 2
2 2
¢ =2 }Te(E, )_—k op3 7 kT nke, ==L ke,
3 3 2E 2 E. 2 T,

This result is of the same form as the equation above obtained from a
simple argument but with a different prefactor - 7°/2 as opposed to 1.

This calculation is the leading order term in an expansion in powers of
(kyT | Ey.)’

To next order the chemical potential is temperature dependent (see below)

but because for metals £,7" <« E, we can usually ignore it.

| 7k, T,

=FE,
# 3 2FE,

Examples:
Electron gas in solids — often much smaller than lattice specific heat
Liquid helium mixtures of 3He in “He — near ideal Fermi gas

QCMP Lent/Easter 2021 3.7



Specific Heat of mixtures of 3He and “He

« Experimental procedure:
« |solate from surroundings
* Input heat for given time
 Measure temperature rise

temperatures and pressures

MIXING CHAMBER
AI HEAT SWITCH

pness CONTACT
1 FILL LINE
E i /Fassusmnce THERMOMETER
,
T 1266 STYCAST WALL

——COPPER H. EXCH.
[———Ag SINTER

—— HEATERS

———RESISTANCE THERMOMETERS
INSIDE SINTERED BLOCK

——ELEC. FEEDTHROUGH

—CONCENTRIC TUBE
CAPACITOR

Cool helium mixtures to mK temperatures,

Calculate specific heat at particular

4K

Helium dilution

refrigerator \

1.5K

0.7K

Shil
Sbll eader
- secundary impedance

1|I »i\ heliirnath

Sl pemiping line
1

{ 1K bath

A

50mK

mainimpedance
valimchamber

heat exchangers

concantrated phasze
phasza boundary

mixing chamber
ditule phasoe

5mK

Fig. 1. A schematic view of the calorimeter. The internal parts are spaced from
‘the walls and from each other by layers of nylon lace (not shown).

QCMP Lent/Easter 2021 Polturak and Rosenbaum JLTP, 43, 477 (1981)
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Specific heat of mixtures of liquid *He and “He
2 2
« Fromabove c, = ﬂ—lnk T. = Ep _ T (372271)2/3

2T Y Tk, 2mk,

* Linear behaviour in Fermi gas regime 7' < 1,

Ce ° 0 7 T Y T T f
(mJ/K-mole)
350 o § ° o ¥/ my= 2.44
-]
300}
° ©
1; 200+ CPO —
o =]
280k E L X =2.90% TABLE 1I
§ B d:’o P= O atm Experimental Values of the Effective Fermi Temperature T3 and
. . *
o _E_E; N /m, = 2,00 the Specific Heat Effective Mass m
200F - &)
5 100 - X P, atm T, mK m*/ms
o
150 & 0.0502 0 330+16 2.45+0.12
e 0.0502 9.85 314+13 2.74+0.12
o 0.0502 20.00 292+£13 3.07+0.13
100 L 0.0299 0 235+9 2.44+0.09
e | 1 | 1 1 ! ] : 0.0299 10.00 20310 3.02+0.14
o o LOSER O 6 20 30 20 50 60 70 8o
P = 9.85 atm. T{mK)
50
Fig. 3. Specific heat per mole of solution for X =0.0299 at zero
i 1 " " f 1 | [ pressure. Error bars represent experimental uncertainties. The
o] 10 20 30 40 S50 60, 70 80 upper line is the specific heat of a free Fermi gas of the same
T(mK} number density having an effective mass determined by the
low-temperature slope of the data (T% =235mK, m*/m,=
Fig. 2. Specific heat per mole of solution for X =0.0502 at 10atm. Error  2.44). The lower curve was fitted to the higher temperature data
bars represent the experimental uncertainties. above 50 mK by adjusting m™* =2.01m.

« Soknowing c,,T,n we can calculate 7. the Fermi temperature
and m the effective mass

- Effective mass 2.44 to 3.07 time bare 3He mass — due to interactions

QCMP Lent/Easter 2021 Polturak and Rosenbaum JLTP, 43, 477 (1981)
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Screening and Thomas-Fermi approximation

Placing a positive charge in a metal will result in electrons moving around
to screen its potential resulting in zero electric field.

This is quite different from a dielectric where electrons are not able to
move freely and the potential is reduced by dielectric constant

In a classical picture electrons can move anywhere, but quantum
mechanics dictates this is not possible - an electron cannot sit right on top
of a nucleus.

In metals a balance is reached between minimising potential and kinetic
energy, screening over a short but finite distance.

We estimate the response of a free electron gas to a perturbing potential.
Vo(r) is the electrostatic potential, p,(r) the charge distribution.

VZI/O(I,) — _ pO(r)
o
Consider the positive background charge to be homogeneous with the
electron gas moving around - plasma or “Jellium” model and in this case
po(r) = 0 everywhere (this does not include the charges used to set up the
perturbing potential).
QCMP Lent/Easter 2021 3.10




Screening and Thomas-Fermi approximation

» In the presence of a perturbing potential ¥, (r)the electron charge
density redistributes p(r) = p,(r) + op(r) which changes the potential
V(r)=V,(r)+ 06V (r) . The changes are related by: V>S5V (r) = — 2%

« We link the charge redistribution to
the applied potential by assuming the
perturbing potential shifts free on(r)
electron energy levels — the same as n
assuming a spatially varying Fermi
energy. This is the “Thomas-Fermi”
approximation.

op(r) Ep(r)

=€ Vit (1)

—e Vi (1

 The potential is the total produced by
the added external charge and the
induced “screening” charge

V. =V _+06V hence:

tot ext
2

—%Vzw(r) +(=e)( SV (r)+V,, () (r) = Ey(r)

QCMP Lent/Easter 2021 3.1




Screening and the Thomas-Fermi approximation

« Assume the induced potential is slowly varying on the scale of the
Fermi wavelength 27 / k.. so the energy eigenvalues are just shifted
by potential as a function of position:

E(k,r) = E,(K) - eV, ()
where E,(K) has a free electron parabolic dispersion %

« Keeping the electron states filled up to a constant energy,u means we
adjust the local Fermi energy E_(r) as measured from the bottom of

2k2

the band so:
lu — EF (l') € - (l') E A old / EA new /
* A small shift in the local Fermi " A 1e V o
Energy leads to a change in the
local electron number density, 7. = Qteavtvelys figgd
on=g,(E.)oE, =eg,(E.)V,, |
* Andfromabove V =V _ +0V 9(E) g(E)
SO we have: | —— S eve
perturbing potential VY
5;1 egV (E )( ot + 51/) shifts all energy levels down

QCMP Lent/Easter 2021 3.12



Screening and the Thomas-Fermi approximation

« Since the added potential and induced electron number density are small
we can use Poisson’s equation to write:

V2V (r)=<6n= e’ gy (Ey) BV () +V,_(r))

€ €
* We can calculate the induced potential and density response usmg Fourier
transformation. Assume an oscillatory perturbing potential : V. =V._(q)e""

and a resulting oscillatory induced potential: 5V = 8V (q)e'*" substltutlng
into the equation above: 5
e g, (Ey)

V(87 (q)e"" ) =—¢*6V (q)e" = L2V (@) +V,, (@)™

=)

= oV (q)| ¢’ +e2gV<EF>/eo] V. (@e’g, (E.)/ €,

€ gV(EF)/€0 QiF
= oV (q) = = —
e Where we define the Thomas—Fermi wavevector:

rr = (eng (Ep)/ 60)

QCMP Lent/Easter 2021 3.13
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Screening and the Thomas-Fermi approximation

« The Thomas-Fermi wavevector q,. = [e g, (E, )/eoj and given that for
the free electron gas:

3/2 2,2
gy (E) —_( h’?) E1/2, L, = hzl;;F = gy (Ep) = 0 k.

’ 2
* We obtain: ti = 12 me ki, :ik_F:(z‘% Al)

2 1/2
N T a v

N

- where the Bohrradiusis @, = Arh % ~().53A

me*
-1

and the Wigner-Seitz radius, 7, is defined by (47 /3)r; =n
« To find the induced electron number density — from above we have

2
Sn=eg, (E,)(V.,+6V), 6V (q) =——L—V

q +QT2“F

€ ’ € ’
= on(q) = Na (q)= qTF ° Vext (q)(l - 2QTF > | T _OVext (q) 2 qz
e q +qTF e q /QTF +1

V.. (Q), QTF =€ gV(E )/ €

QCMP Lent/Easter 2021 3.14



The Thomas-Fermi dielectric function

« The wavevector dependent dielectric function e(q)relates the electric
displacement D to the electric field E by €,e(q)E(q) =D(q)

e given:

VVext — _D(q) / 609 tot — _E(q) = VYV ext E((])V tot
« Since from above
Vtot I/ext + 5V :> I/ext (q) — E(q) (5V(q) + ext (q))
* Using > >
qZ “ 2
5V(q) - = 2 t 2 ext (q) :> tot (q) ext (q)
q T4 QTF

« And hence the “Thomas Fermi dielectric function” IS given by:

™ (q) =1+ 92

CI
. QTF Is the Thomas-Fermi screenlng length, for copper where the electron

density n=8.5x10*cm™ we have 1/¢,, =0.055nm.

QCMP Lent/Easter 2021 3.15



Thomas-Fermi screening

From last slide € (q)=1+¢.. /g 0 5 ro
. TF -2 I -

For small g (long distances) €~ oc g > exp(—kr)

Long range part of Coulomb potential 2 0.1 ,

also oc g~* so it is exactly cancelled = screened

In real space if V_, =Q/r (Coulombic 5-0-2 — unscreened

and long range) then V() =(Q/r)e " | &

is the short range screened potential. 0.3 1~

(problem sheet 1 question 6) In this graph screening length 1/k=1

The screened potential is known as the “Yukawa potential” in particle physics

Exponential factor reduces range of Coulomb potential — screened over
distances comparable to inter-particle spacing

Mobile electron gas highly effective at screening external charges.

Application to resistivity of alloys — atoms of Zn (valency 2) added
substitutionally to metallic copper, (valency 1) has an excess charge.

Foreign atom scatters conduction electrons with interaction given by
screened Coulomb potential — scattering contributes to increase in in
resistivity, theory and experiment in agreement.
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Summary of Lecture 3

« The Sommerfeld model — electrons in a degenerate Fermi gas
* Free electron gas in three dimensions

» Fermi surface and density of states

« Thermal properties of the Fermi gas — specific heat

» Experimental measurements of specific heat in liquid helium.

« Screening and the Thomas-Fermi approximation,
 Thomas-Fermi wavevector and dielectric function

» Effect of screening on a Coulomb potential

QCMP Lent/Easter 2021 3.17



Quantum Condensed Matter Physics
Lecture 3

The End
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Quantum Condensed Matter Physics
Lecture 4

David Ritchie
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Quantum Condensed Matter Physics

1. Classical and Semi-classical models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)

Types of bonding; Van der Waals, ionic, covalent. Crystal structures.
Reciprocal space, x-ray diffraction and Brillouin zones. Lattice
dynamics and phonons; 1D monoatomic and diatomic chains, 3D
crystals. Heat capacity due to lattice vibrations; Einstein and Debye
models. Thermal conductivity of insulators. Electrons in a periodic
potential; Bloch’s theorem. Nearly free electron approximation; plane
waves and bandgaps. Tight binding approximation; linear combination
of atomic orbitals, linear chain and three dimensions, two bands.
Pseudopotentials.. ..........

3. Experimental probes of band structure (4L)

4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)

6. Fermi Liquids (2L)
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From atoms to solids — the binding of crystals

Cohesion due to interaction between electrons and nuclei giving rise to
effective interaction potential between atoms

Several different types of bonds — firstly Van der Waals

Example: Inert gases — filled electron shells, large ionization energies
Electron configuration in solid similar to that in separated atoms
Atoms neutral — interaction weak, due to Van der Waals interaction
Consider atom as oscillator — electrons fluctuate around nucleus

Zero point fluctuations cause dipole moment p,, a second atom at distance R
experiences induced electric field £ oc p, / R’

This field induces a dipole at the second atom p, o & p, / R> where o
Is the atomic polarizability
The second atom induces an electric field at the first
E ocp, /R cap, /R°.
The energy of the system changes by: AU = <—p1 -E1> oC —a<p12>/R6.
Induced interaction oc< p12 > and is always attractive
Note - Energy depends on < P12 > and not < p, >* which is zero

QCMP Lent/Easter 2021 4.3



From atoms to solids — Van der Waals bonding

If atoms move together so the electron charge distributions overlap they
repel each other

Repulsion due to electrostatic forces and the Pauli exclusion principle
which prevents electrons having the same quantum numbers

For example if we try to force 2 spin parallel electrons into the same 1s
state in H, one will go into the 2s state at a large energy cost

Calculations of repulsive interactions is complex
there is a short range (hard core) potential

Common empirical “Lennard-Jones” potential

o-of ] | L

I i I

&,0 are constants depending on atoms involved r(4)

Except He, Inert gases form close-packed face-centered cubic solids with
high coordination nos. (10-12), low cohesive energies and melting points

He is special — due to zero point motion does not solidify even at absolute
zero, unless pressurised to 30 Bar!
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Van de Waals bonding for low-dimensional
structures

Metallic Semiconducting

Liu et al, Nature Materials 1, 16042 (2016) Nature Reviews | Materials
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From atoms to solids — lonic bonding
Atoms with electronic configuration close to a filled shell will tend to gain or
lose electrons to fill the shell
Energy for reaction M — M ™ + e~ in gas phase is ionization energy [
Energy for reaction X +e~ — X in gas phase is electron affinity 4

To form ionic molecules it costs an energy I + A but the electrostatic
potential energy between charges is reduced by a greater amount

Electrostatic interaction for a diatomic crystal: Z Z

electrostatzc — A

Where U — +q2 /47;5 R is sum of all Coulomb energies between ijons.
If the system ISon a regular lattice with constant R then we can write:
U =-a, q’ / 4re,R

electrostatic

where the Madelung constant depends on structure NaCl («,, =1.7476)
CsCl (a,, =1.7627) cubic ZnS or Zincblende (e, =1.6381)

We must add repulsive short range force, since ions are different sizes we
get different energies - explains why NaCl has rocksalt structure and not
CsCl structure

Intermediate coordination numbers (6-8)

4.6



Figure 15 We may construct the sodium chloride
crystal structure by arranging Na* and Cl” ions alter-
nately at the lattice points of a simple cubic lattice. In
the crystal each ion is surrounded by six nearest neigh-
hors of the opposite charge. The space lattice is fce,
and the busis has one Cl~ ion at 000 and ane Na* ion at
11! The figure shows one conventional cubic cell.
The ionic diameters here are reduced in relation to the

cell in order to clarify the spatial arrangement.

QCMP Lent/Easter 2021

Figure 18 The cesium chloride crystal
structure. The space lattice is simple
cubic, and the basis has one Cs* ion at
000 and one Cl™ ion at 5 5 5.

Figure 20 The hexagonal close-packed structure.
The atom positions in this sbucture do not constitute
a space lattice. The space lattice is simple hexagonal
with a basis of two identical atoms associated with
each lattice point. The lattice parameters a and ¢ are
indicated, where a is in the basal plane and ¢ is the
magnitude of the axis a; of Fig. 12,

Figure 23 Crystal structure of diamond,
showing the tetrabedral bond arrangement.

Figure 24 Crystal structure of cubic zine
sulfide,

From Kittel 4.7



From atoms to solids — Covalent bonding

Consider covalent bonding in hydrogen molecule — due to electron pair
Overlapping orbitals on neighbouring atoms hybridise

Hamiltonian symmetric about point between nuclei, hence eigenstates have
odd or even parity about this point

With a basis of atomic states @(r — R) where the nucleus is at R we get
two states, of odd and even parity

y. (r)=¢(r—-R,)tg(r-R,)
¥_is non zero and ¥ _ has a node between the nuclei

For an attractive potential we will have £, < E_ and the two electrons of
opposite spin will fill the lower ‘bonding’ state v/, .

The ‘anti-bonding’ state will be separated from the bonding state by an
energy gap Eg = FE_ —E_and will be unfilled

E
B,

QCMP Lent/Easter 2021 4.8



From atoms to solids — Covalent bonding

« An example of degenerate perturbation theory

* We calculate single-electron energy levels, ignore electron-electron
repulsion and use Dirac notation, so:

a)=g(r-R,) [b)=g(r-R,)
« Look for energy eigenfunction within subspace spanned by orthonormal
basis functions: ‘w = a‘a> + [ b>
* Apply Hamiltonian, and since ‘a and ‘b> have the same eigenenergy:
H|y)=E|y)= aH|a)+ fH|b)=aE|a)+ BE|b)
« Left multiply by |a> and |b> we obtain two equations:

a<a H a>+,8<a Hb>:aE
o (b[H|a)+ B(b[H|b) = BE

From this, given H, = H;b we can obtain an eigenvector equation for the
coefficients &, # which only has a non trivial solution if the determinant is

Zero.
Haa B E Hab

H Zb H bb_E
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From atoms to solids — Covalent bonding

H, H,—E

From previous slide: |Haa -£E H,
ab

From this we can find the energy eigenvalues which are distributed around

the average of H__and H,,
2
Hy+Hy AE A _ (Haa—bej VI,

1/2
2

E =

2 2 7 2 2
For H =H, ,AE/2=H_| we getcovalent bonding

f H, <<H,or H >>H, then E=H, o E=H, and H ,is
irrelevant - we have ionic bonding

See Problem Sheet 1 question 7
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Covalent and ionic semiconductors

With s electrons molecules are formed
which form a weakly bound molecular
solid.

With p and d orbitals, bonds become
directional such as sp?in C, Si and Ge

These hybrids point in tetrahedral
directions (111),(111),(111),(111)
and each atom donates 1 electron

This forms an open tetrahedral network
— “diamond structure” Tetrahedral bonding in diamond

In GaAs and cubic ZnS the total number of electrons satisfies “octet rule”
Same tetrahedral structure as diamond with alternating atoms - “zincblende”
Zincblende structure cohesion is partly covalent and partly ionic

Hexagonal crystal structure based on local tetrahedral network - “wurtzite”
Waurtzite structure favoured in more ionic systems.

With increasing ionicity we get : Group IV Ge (diamond), 1lI-V GaAs (zincblende),
[I-VI ZnS (zincblende or wurtzite), 11-VI CdS (wurtzite), I-VII NaCl (rocksalt)

QCMP Lent/Easter 2021 4.11



Metals

Band forms from atomic states. Partially filled which
implies energy gain generalisation of covalent bond
to ‘giant molecule’

Electrons in band states delocalised, high
conductivity. Bonding is isotropic, like van der \Waals.

Close packing. to maximise density while keeping
atomic cores far apart: fcc or hcp. High coordination
numbers =10—-12

Screening by conduction electrons. Screening length
of order atomic spacing = 1A

Within a row in periodic table: ion core potential
grows, density increases, crossover to covalent
semiconductors, then insulating molecular structures.

Transition metals. d-electrons more localised, inside
s- and p- orbitals. Are often spin-polarised hence
magnetism in 3d elements. 4d and 5d orbitals
overlap giving high binding energy (e.g. W melts at
3700K).

QCMP Lent/Easter 2021

covalent bonding:
molecular orbitals out of
states from two atoms

metallic bonding:
band out of states

from many atoms
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Crystal Lattices

* Anideal crystal is an infinite repetition of structural unit in space

* Repeating structure called the /attice

« Group of atoms which is repeated is called the basis

* The basis may be a single atom or very complex — such as a polymer

/f + * =

Lattice Basis Crystal

- Lattice is defined by primitive translation vectors: a,, i=12,3
* Anarbitrary lattice translationis: T= ) na,

* The atomic arrangement looks the same from equivalent points in the unit

cell: , :
r :1'+Z:nl.ai V 1integer n.

1
« The lattice formed is called a Bravais lattice
QCMP Lent/Easter 2021 4.13



Wigner-Seitz cell

The region in space around a particular lattice point closer to it than any
other lattice point

To construct — draw lines from a given lattice point to all of its neighbours.
Draw planes perpendicular with each line intersecting at the line midpoint.
The smallest volume enclosed is the Wigner-Seitz primitive unit cell

Bcc lattice, Wigner-Seitz cell fcc lattice, Wigner-Seitz cell
QCMP Lent/Easter 2021 4.14



Space and point groups

«  Symmetry operations which map lattice onto itself Space group

« Map lattice onto itself, but keep one point fixed Point group.

» Point group operations: reflections, inversions, rotations

« Seven point groups for Bravais lattices = Seven crystal systems

* cubic, tetragonal, orthorhombic, monoclinic, triclinic, trigonal, hexagonal.
* Fourteen space groups for Bravais lattices

* General crystal structures (Bravais lattice + basis): 32 point groups, 230
space groups.
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The Bravais lattice types

See also p.170 Singleton
CUBIC
a=b=c P
o=p=y=90°

TETRAGONAL
a=bzc P
o=p=y=90°
ORTHORHOMBIC
azxb=zc P
o=p=y=90°
HEXAGONAL TRIGONAL
a=b=zc a=b=c
«=p="2" P =B =y290°
v =120°
MONOCLINIC -

bsc p 4 Tylg)es of Unit Cell
e c = Primitive
o=y=% I = Body-Centred
p=120° F = Face Centred

C =SideCentred

TRICLINIC L
azbzc P 7 Crystal _Classe_s
o Pey290° — 14 Bravais Lattices
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Index system for crystal planes

« Coordinates of three lattice points enough to define crystal plane
« Label plane by coordinates where it cuts axes.
r,| =|xa,,ya,,za,|
- (hkl)denotes plane which cuts axes at a,/h, a,/k, a,/l
or multiple thereof, so that xh = yk = z/ = integer

plan (111) plan (221)
 (hkl) is the index of the plane

« For set of planes equivalent by
symmetry use

° e.g.{IOO} For a cubic crystal has =1
equivalent symmetry planes:

(100),(010),(010), .;’1
(100),(010),(001) =

- Note that overbar 1 denotes negation
QCMP Lent/Easter 2021 4.17
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Crystal plane indices

Figure 13 This plane intercepts
ﬂlﬁaihaﬁa\!mmhhz%gaa*
The reciprocals of these numbers
are 4,3, ;. The smallest thiree inte-
gers having the same ratio are 2, 3,
3, and thus the indices of the plane
are (233).

From Kittel

Figure 14 Indices of importunt planes in a cubie erystal. The plane (200} is parallel te (100) and

to (100},

QCMP Lent/Easter 2021 418



Summary of Lecture 4

* The binding of crystals
 Van der Waals

* |onic
« Covalent
 Metals

» Crystal lattices

«  Wigner —Seitz cell

« Space and Point groups

* Index system for crystal planes
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Quantum Condensed Matter Physics
Lecture 4

The End
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