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Quantum Condensed Matter Physics

1. Classical and Semi-classical models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)
3. Experimental probes of band structure (4L)

Photon absorption; transition rates, experimental arrangement for
absorption spectroscopy, direct and indirect semiconductors, excitons.
Quantum oscillations; de Haas-Van Alphen effect in copper and
strontium ruthenate. Photoemission; angle resolved photoemission
spectroscopy (ARPES) in GaAs and strontium ruthenate. Tunnelling;
scanning tunnelling microscopy. Cyclotron resonance. Scattering in
metals; Wiedemann-Franz law, theory of electrical and thermal
transport, Matthiessen’s rule, emission and absorption of phonons.
Experiments demonstrating electron-phonon and electron—electron
scattering at low temperatures.

4. Semiconductors and semiconductor devices (5L)
5. Electronic instabilities (2L)

6. Fermi Liquids (2L)
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Scattering in metals

First we consider the effect of scattering in a metal with isotropic bands
characterised by an effective mass m"~ and a spherical Fermi surface

Earlier in the course we discussed the relaxation time approximation finding

an expression for electrical conductivity in terms of the electron number

density,n, effective mass and scattering time for electrical conduction,7
oc=ne’t_/m'

The thermal conductivity, x is defined by Jq =—xVI where Jq is the flux

of heat (energy per unit area per unit time)

We also have from kinetic theory x = %<V2>TKC61 , T Is the scattering time
for thermal transport,C , is the electronic specific heat given by:
272
C,=Lnr’k’T/E,
If we assume <v2> = vi where v, is the Fermi velocity then we obtain for

the electronic thermal conductivity
I,

2712
K=+nT"ky—ViT,
EF
Assuming £ = %m*vfp taking the ratio of thermal to electrical conductivity
and dividing by T' we can define: K 7[2](; T

o o 2
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Wiedemann-frzanz law

K _ 7 k, T

ol 3¢ .

- If we assume the scattering times are the same 7, = 7_ we have the

Wiedemann-Franz law, which states that for metals the ratio of the thermal
conductivity to the electrical conductivity is proportional to the temperature

- L,is the Lorentz number with value L, = (7°k, /3e’)=2.45x10"WQK™

* From the previous slide L =

’ Experimentaol results for Table 5 Experimental Lorenz numbers Kittel
zreoiingdoégoagr(eseerz;i? © L x 10" watt-ohm/deg’ L X 10° watt-ohm/deg®
with this value for a range | mm — i Metd oC 100°C
of different metals - s a0 A

« So by measuring the o 242 243 o 252 249
electrical conductivity we | Mo 2.61 2.79 Zn 2.31 2.33
can estimate the thermal
conductivity

« As the temperature is lowered the Lorentz number decreases, e.g. for pure
Cu at 15K it is an order of magnitude smaller than L,

« Attributed to a difference between the thermal and electrical scattering times
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Electrical transport in metals

Previously we have seen that v, = (1/ )V, E(K) - so electron velocities
are always perpendicular to the surface of constant energy

Consider electrical conduction; with no electric field the velocities are in
random directions and no net current flows

When a electric field is applied, electrons at the Fermi surface acquire a
small amount of extra velocity in a particular direction - top part of diagram

Electrons on RHS of fermi surface move into
slightly higher energy states, other electrons fill
the states vacated. On LHS states are vacated

Fermi surface moves by a small amount where
Sk=+1m"v,,v, =107 ms™" is the drift velocity
Note that v, < v, =3x 10°ms™"

The lower diagram shows the Fermi-Dirac

distribution for left heading and right heading
electrons (dotted) and equilibrium situation (grey)

T is time to randomise an electron’s forward / \

velocity, a scattering process sends an electron E
heading to the right into empty state heading left

J— Singleton

Black circles filled states,
white circles empty states
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Thermal transport in metals

For thermal conductivity

In kinetic theory, when conducting heat, gas
molecules travelling in one direction have a
higher thermal energy (or temperature) than
those travelling in the other direction

In the diagram the electrons travelling left are
cooler with a less smeared out Fermi-Dirac
distribution than those travelling to the right —
in the direction of the heat flow

The long arrow represents phonon scattering
events at room temperature which affect both
electrical and thermal conduction.

J— Singleton

The short arrows are phonon scattering processes at low temperatures which
only affect thermal conduction — by warming up cold electrons and cooling

hot electrons

T ._is the time to randomise an electron’s thermal energy, a scattering process
can cause an electron to lose or gain ~ k,T of energy and move into an
empty state close by or move from hot side of Fermi surface to cold side by

scattering off a high momentum phonon
QCMP Lent/Easter 2021
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Matthiessens’s rule

+ We assume that electronic scattering rates are additive

1 1 1 1
—=—t—+—+....

T T T, T
 Where the z';l are scattering rates due to different processes e.g. collisions
with or emission/absorption of phonons, scattering from impurities etc

« This equation suggests that the scattering process with the shortest
scattering time will dominate — so we can predict regions of temperature
where we can ignore all forms of scattering but one

« E.g.itis reasonable to assume that the scattering of electrons at high
temperature will be almost entirely due to phonons

« Matthiessen’s rule is only an approximation, it fails when the outcome of one
scattering process influences another and when one or more scattering time
is a function of Kk

* Inthe second case kx,o will involve total scattering times due to all
processes averaged over K whereas the equation implies the summation of
reciprocals of each scattering time individually averaged over all k

« An application of Matthiessen’s rule is the calculation of electron mobility in

two-dimensional electron gases for different scattering processes
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Emission and absorption of phonons

» We picture phonons as propagating local distortions of the crystal which may
scatter an electron in two different ways:

» Elastic processes, where both electron and phonon change wavevector and
energy, constrained by conservation of energy and momentum

» Inelastic processes where the phonon is emitted or absorbed by an electron
causing the electron’s wavevector and energy to change

« So far we have assumed that the positions of ions are not affected by the
presence of mobile electrons — unrealistic since they are both highly charged

In reality the passage of an electron will result in the distortion of the lattice
around it. The electron can be scattered by this — it has emitted a phonon

Phonons behave as massless bosons — they can be created and destroyed
in a similar way to photons

They have a black body distribution with energy at temperature T, hiew ~ k,T

So when an electron scatters from or absorbs a phonon, the phonon will
have an energy ~ kT

Electrons are distributed within about *k,T of the Fermi energy. An
electron can only emit a phonon up to energies of roughly k,T, since there

are no unoccupied states for it to fall into at lower energies
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Electron-phonon scattering at room temperature

The probability of emitting a phonon of energy ~ k,T will have a similar
temperature dependence to the probability of absorbing a phonon since:

Emission depends on density of available phonon states with energy ~ k,T
Absorption depends on the number of phonons around with an energy ~ k,T

The Debye temperature, &, of most metals is within about 100K of room
temperature (298K) (e.g. Cu 315K, Fe 420K, Al 394K, Pt 230K, Ag 215K)

k0, is roughly the energy of the most energetic phonons, so at room

temperature phonons with energy 7@ ~ k,6,, will have wavevectors similar
to the width of the Brillouin zone and the Fermi wavevector g ~ k.

So 1 phonon can scatter an electron to the other
side of the Fermi surface

Hence at room temperature the electrical and

thermal scattering rates are approximately equal
T;l ~ 2';1 (and hence the Weidemann-Franz law is

obeyed) and are proportional to the number of
phonons with iiw ~ k,T

QCMP Lent/Easter 2021

Fermi surface

13.9



Electron-phonon scattering at low temperatures

At low temperatures 7' < 8, phonons will have energies k, T < k,0,, so q
iIs much less than the size of the Brillouin zone and the Fermi wavevector

One inelastic scattering event will be able to change the
electrons energy by ~ k,T and hence the thermal
scattering rate T, ' o no. of phonons with Z@ ~ k T
whichis oc T° at low temperatures from Debye theory g<k,

Hence one phonon scattering event (elastic or inelastic) 7 mal
will be unable to knock the electron to the other side of
the Fermi surface (required for electrical scattering) and Fermi surface
so the electrical scatterlng rate |s much less than the
thermal scattering rate 7_ '« T

This is the reason for the failure of the Weidemann-Franz law at low T

To take account of the fact that that many scattering events through a small
angle @ are required before the excess forward velocity of the electron is
randomised the scattering rate must included a weighting factor

l-cos@= 0" /2~ q" |2k, = @ | 2k v, oc T*
where @ =v +d IS the phonon dlsper3|on relation, v, the speed of sound

5 3
Hence we have z' Lo T, z' Y'oc T° and so T_ 1is much smaller atlow T
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Electron-phonon scattering at low temperatures
The z';l oc T dependence is rarely exactly obeyed

The periodicity of k-space allows phonons
with small g to scatter electrons at the
Fermi surface (A) into empty states with
energy ~ £ in an adjacent Brillouin zone
(B). These states may have a velocity
almost opposite to that of the original
state, This is called umklapp scattering

Complicated Fermi surfaces may allow scattering of electrons by phonons
with small q into parts of the Fermi surface with very different velocities

Both of these effects give a scattering rate 7 oc e %" where 0. is a
characteristic temperature depending on the Fermi surface geometry

For very low temperatures the phonon scattering becomes negligible and
scattering of electrons by impurities and defects becomes dominant

Impurities have a different ionic core from the host metal and therefore will
often appear to be charged with respect to the background.

Scattering of electrons by impurities deflects them through large angles. One
scattering event degrades thermal and electrical transport in the same way

and 7. =7_ hence o ~const, Kk oc I' and the Weidemann-Franz law holds
QCMP Lent/Easter2021 13.11
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Scattering — electrical resistivity

Table gives summary of
the temperature
dependence of scattering
times and electrical and
thermal conductivities

(a) Resistance relative to
room temperature value
for three samples of Na
of different purity. The
results show a constant
resistance at low
temperature determined
by impurity scattering.
Resistance rises for
T>~10K

Temperature | Scattering IS W-F ratio
(scatterer) times @
Very low T 52 T k o T, Lo
(impurities) | ~ const a ~ const
T ~ I‘;-'I'DI.-"I].[] T O T_:'t, K X I_E, < L[]
P [ - = _ -
(phonons) T ¢ T2 2T | g oc T3 5 e ®/T
T =~ 0p Toe 52 Ty K =const, Ly
(phonons) x T-1 g oc T
0.3 .
D. K. C. MacDonald, K. Mendelssohn o« Au 8 =175
- Proc. R. Soc. Lond. A 202 103-126 o Na 202
1950 - o Cu 333 7
. (1950) v AL 395
g 30 . 0-2 ,‘
z (a) Resistance of Na
8 >
= =)
Z U
C a0 3 (b)
2
3
= 0.1 <
;
= Y
0 | I | | | | | | | /
T4 6§ 10 1 4 6 5 20 o__cae . .
) ) temperature (° ) 0 0.1 0.2 0.3 0.4
Froure 4. Resistance of sodium below 20° K. Specimens: o, Na2; ®, Na3; O, Na4, T/H

(b) shows normalised electrical resistivity data for several metals as a

function of normalised temperature. They all fit the same form as a function

of temperature

« Atlow T the resistivity is constant, at high T, o < T'=> pocT

QCMP Lent/Easter 2021
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Scattering - thermal conductivity

Thermal conductivity x
rises linearly with T,
before reaching a peak
then decreasing to a
values independent of T

Peak in K higher for
samples with fewer
impurities — confirmed by
results for both Li and Na
Similar results for Cu

A good illustration of the
competition between
scattering times

At low T, few phonons so 7,
scattering dominates and K‘ oc T . As T rises to -2 ‘9

Temperature | Scattering K W-F ratio
(scatterer) times o)
Very low T 72 To v x T, Lq
(impurities) | ~ const o ~ const
T ~ fp /10 .o 17, K oo T, < Ly
(phonons) T ox T 5T [ g oc T7% o %/T
T >~ fp T & Tor K =const, Ly
(phonons) x T-! o oc T!
50 F o Of «— High purity
L Cu —': 1F e x
20 10 O | [/ S
—T, E. 9 ,‘"r'Li 1 / o .
ERES = :
= ~ [/ Lower purity
*; on L 0 AT N T N ¥ IR E—
22 0 20 40 60 80 100
. (a) T(K)
10F
0 P ———  H0F . .
0 20 40 60 80 "  High purity
(c) I'(K) = |
T A0 F
SHE T Na
*E ) - l':'
b < Ton impurity Z20F.
.« [ Lower purity
Ot b b L
0 | 8 12 16 18
(b) T(K)

phonon scattering time becomes shorter T < z'
and phonon scattering dominates with x oc T_

QCMP Lent/Easter 2021
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Electron-electron scattering
In metals with simple Fermi surfaces e-e scattering relatively unimportant

Initial and final state for both electrons have E = E_, k =k,
Energy and momentum must also be conserved
This combination makes electron-electron scattering quite unlikely

It becomes important when (a) the Fermi surface is complicated so
conservation of E,k becomes easier (b) density of states at E.is very large
due to large effective mass, increasing number of initial and final states

Examples: transition metal elements and heavy fermion compounds
Consider a filled Fermi sphere and a single excited electron with ¢, > £,

To be scattered it must interact with an electron with €, < E. since only
states with energies less then the Fermi energy are occupied

Pauli exclusion principle requires that these electrons can only scatter into
unoccupied levels where €, > £, ¢, > E,

Energy conservation requires €, +€, = €; +¢€,
If ¢, = E . these conditions can only be fulfilled if €, =€, =€, = £,

The allowed wavevectors for electrons 2,3,4 must then occupy zero volume
in k-space which makes the probability of this process very small at zero T

Hence the electron scattering lifetime at e = £, T =0 is infinite

QCMP Lent/Easter 2021 13.14



Electron-electron scattering

»  When ¢, is a little different from £ some
phase space becomes available for the
process since the other 3 energies can now
vary within a shell of thickness |61 —EF| about
the Fermi surface

» This gives a scattering rate oc (¢, — £, )’
because once ¢,, €; have been chosen, energy
conservation allows no choice for ¢,

« [f the excited electron is superimposed on a
thermal distribution of electrons at non-zero T,
there is an additional range of choice in
energies available for the scattering process
with rate oc (k,T')

.+ Sooverallt' =a(e —E.) + B(k,T) witha,
constant

Ideal electrical resistivity (pQ2cm)

10

10

4

el
IK
L1 1] L1

f:r'?..'."’

[ |

1 5

10 T(K) 20

At finite temperature ¢, —FE, ~k,T sowecansay 7~ ocT°, 7oc T

and hencec oc T, poc T

Figure shows resistivity of Pd, Fe, Nb with low temperature 77 dependence

visible
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Summary of Lecture 13

« Scattering in metals

 Wiedemann-Franz law

« Electrical and thermal transport in metals

« Matthiessens’s rule

* Emission and absorption of phonons

« Electron-phonon scattering at room and low temperatures

« The effect of scattering on electrical resistivity and thermal conductivity
« Electron-electron scattering
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Quantum Condensed Matter Physics
Lecture 13
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Quantum Condensed Matter Physics
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Quantum Condensed Matter Physics

1. Classical and Semi-classical models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)

3. Experimental probes of band structure (4L)

4. Semiconductors and semiconductor devices (5L)

Intrinsic semiconductors, law of mass action, doping in semiconductors,
impurity ionisation, variation of carrier concentration and mobility with
temperature - impurity and phonon scattering, Hall effect with two
carrier types.

Metal to semiconductor contact. P-n junction; charge redistribution,
band bending and equilibrium, balance of currents, voltage bias. Light
emitting diodes; GaN, organic.......

5. Electronic instabilities (2L)
6. Fermi Liquids (2L)
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Semiconductors — intrinsic carriers

In semiconductors the energy gap is small enough A
so thermal excitation of the carriers across the gap
IS important

Diagram shows density of states for electrons and
holes as well as the Fermi function determining
occupancy of thermally excited states

The chemical potential lies mid-gap

We calculate the thermal intrinsic carrier
concentration in a model semiconductor with
parabolic electron and hole bands

The conduction and valegcg band dispersionszarze

iven b hk h'k
TEIDY ey =e +25, (k)= -
2m, 2m,

Density of states for the condu3§;2tion band

2 %k
gxd=2l %J (e—¢)"”

2 2
n°\ h 1

Density of states for the valence band g, (¢) = = [
T
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Semiconductors — intrinsic carriers

« We can calculate the carrier density when the chemical potential £z is known

» For electrons in the conduction band n = Iwge (¢) f (€)de with the Fermi
function 1 e

(€) = —(e=p)/(kpT')
el T L

e
Where the approximation is valid for € — ¢ >> k,T - a non-degenerate gas
3/2 3/2
* Hence 1 (2m o e mk, | _._
n ; _‘- (6—60)1/26 (D qe= | ——B_ | o (i) thsl)

- 272_2 h2 27Z-h2
» And a similar calculation for holes gives 22
i m, k,T (e )(kyT)
P = 2 €
27h

« We define temperature dependent concentrations representing the number
of states within~ k,7'of the band edge for the conduction and valence bands

g N
m m
n(T)=2 =2 , n(T)=2| L2

n=n (T)e_(ec_:u)/(kBT), p=n, (T)e_(/u_ev)/(kBT)

* The concentrations of electrons and holes in terms of the chemical potential
QCMP Lent/Easter 2021 14.4
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Semiconductors — intrinsic carriers

From the last slide n=n_(T)e “*"“" —p=n (T)e # %"

Hence we can write np =n_(T)n, (T)e_eg/(kBT) where €, =€, —¢,

This result is known as the law of mass action and is independent of u - as
yet unknown

In this derivation we have nowhere assumed that the material is intrinsic and
the result holds in the presence of impurities and dopants

The only assumption made is that the distance of the Fermi level from the
edge of both bands is large in comparison to k.7’

A simple kinetic argument shows why np is constant at a given temperature
Suppose the equilibrium population of electrons and holes is maintained by
blackbody radiation

The photons generate electron-hole pairs at a rate A(T') while B(T )np is
the rate of recombination e+h=photon

dn dp
—=A(T)-B(T)np =—
gy (T)=B(T)np gy

In equilibrium dn/dt =dp/dt =0 hencenp = A(T)/ B(T') - a constant at
a given temperature T
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Semiconductors — intrinsic carriers

« Since the product pn is a constant at a given temperature, the introduction of
a small amount of a suitable impurity to increase » will decrease p

« This is important because we can reduce the total carrier concentration n+p
in an impure crystal by controlled introduction of suitable impurities — known
as compensation.

In an intrinsic semiconductor the number of electrons equals the number of
holes and we can write

n, = p, =(n(T)p,(T)) """
The intrinsic carrier concentration depends exponentially on ¢, / (2k,T)
Note L+ 7€, and not €, - because the creation of an electron also creates a hole
From a prewous sllde

) 3/2

=2 m, k T e—(ec—,u)/(kBT) p = 9) mh—kBT e—(ﬂ—ev)/(kBT)
27 , 27h’

Ifweset n=p

e ksl — =(m, / )3/26E /(kBT):>,u—le +3k,TIn(m, / m))
WhICh glves the posmon of the chemical potentlal

If mh = me = U= Eeg the chemical potential is in the middle of the bandgap
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Doped semiconductors

« Carriers can be created in semiconductors by adding impurity atoms — a
process known as doping

« Consider effect on a GaAs crystal of replacing a Ga atom by a Si atom

« Si provides 4 electrons instead of the normal 3 from Ga so it appears like a
Ga atom with an extra electron and an extra positive charge in the nucleus

« Suppose the electron wanders away from the impurity site, it will experience
an attractive force from the charged Si impurity

« The donor energy levels can be calculated as for a hydrogen atom

« We take into account the influence of the surrounding material by making
two corrections

(1) The Coulomb potential is screened by the dielectric constant, so it is
much weaker than in free space (for GaAs € =13.1)

(2) Use effective mass of the electron (for GaAs m, / m, =0.067 )

* The net effect is that the binding energy for the 1s state is now
4 % %
e'm m. |/ m
A, = ——=———+x13.6eV
2(4ree i) g

* Which for GaAs is 5.3meV — much smaller than the bandgap of 1.4eV
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Doped semiconductors n[conductionband)
From the last slide A, = m: /(gzme)x13.6 eV | | I level

For GaAs the Si donor ionisation energy of about 5.3meV is equivalent to a
temperature of 50K. So Si donors in GaAs will all be ionised at room
temperature 2

The figure shows far infra-red Si
absorption due to P impurities in Si
(ionization energy ~45meV). The peaks

correspond to hydrogen like transitions J

between the n=1 ground state and %&J —— tﬁ = o
higher levels Energy (

’ R A Stradling

The hydrogen-like bound states are referenced to the bottom of the
conduction band, because the electron unbinds from the donor atom by
occupying a conduction band state

A Beryllium atom in GaAs acts as an acceptor dopant if it sits on a Ga site.

Be only donates 2 electrons as opposed to the normal 3 from Ga (donating a
hole) and appears like a Ga atom with a negative charge

So we have a positively charged hole circling a negatively charged nucleus

The hydrogenic binding energy can be calculated in the same way as for

donors — taking into account the hole effective mass
QCMP Lent/Easter 2021 14.8



Doped semiconductors

When the hole unbinds from its Be atom the impurity accepts an electron
from the valence band

The accepted electron is used to complete the covalent bonding with
neighbouring atoms and renders the site negatively charged

So while ionising a donor atom releases an electron into the conduction
band, ionising an acceptor atom absorbs an electron from the valence band
creating a hole in the valence band

Even for very low densities of impurities, since the donor or acceptor
energies are much smaller than the band gap, impurities are often the main
source of electrically active carriers

If donors predominate the carriers are mostly electrons and the material is
said to be n-type.

If acceptors dominate carriers are mostly holes and the material is p-type

In most materials there are both donors and acceptor impurities — in GaAs Si
on a Ga site is a donor and on an As site is an acceptor, whether you get n
or p-type depends on the crystal growth technique

Experimentally the different carrier regimes may be distinguished by
measuring the Hall effect, the sign of which depends on the carrier type
QCMP Lent/Easter 2021 14.9



Doped semiconductors — Impurity ionisation
» As long as the no. of donors/acceptors is low enough so the chemical
potential lies in the bandgap then the law of mass action holds

« Given the densities of ionised donors and acceptors N, N , we can use

_ 4 kT 3 x % \32 —E,/(kgT) d th fi | . N N
np = i memh e an e conservation law n— p = D EERAY

to find values for n, p if we know the effective masses and the bandgap

« Diagram shows the temperature
dependence of the electron density in Si
with a net donor density N, — N, =10"cm™

At T<100K the extrinsic electrons freeze out
onto the donors, the gradient depends on
the donor ionisation energy

For 150K<T<300K all of the donors are
lonised — the saturation range, n is constant

For T>500K the intrinsic contribution to n
becomes larger than extrinsic contribution,

the gradient depends on the main bandgap o1 s 1z 16 20
1000/ 7(K™)

50

Si

ND:1015 cm’

Freeze-out
range

. -3
Electron density n (cm™)

The intrinsic contribution, »; is around
3x10°%cm™ at RT — negligible
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Electrical conductivity with two carrier types

» The electrical conductivity of a semiconductor is a sum of contributions from
all carrier types, usually electrons and heavy holes written in terms of carrier
densities and mobilities o = neu, + pepu,,

We write electron and hole mobilities in terms of scattering times for
electrons and heavy holes u, =er, /m., u, =er, /m,

The temperature dependency of the electrical conductivity is determined by
convolutions of the temperature dependences of the carrier concentrations
and scattering times. There are two important types of scattering:

Impurity scattering is similar to Rutherford scattering. The scattering
crossection varies as € and since in the non-degenerate case €~k,T
the crossection varies as 7> and the mean free path as A oc T°

The carrier speed v oc €”? oc T"? hence scattering time 7, = A /v oc T

Contrast to metals where 7, , is independent of T - Carrlers In metals have
similar energy, but in semlconductors a Boltzmann energy distribution

Phonon scattering with T' ~ @,, - the number of phonons is oc 7' so Aoc T

and with voce'” oc T"* we getz,, =A/voc T

As a consequence impurity scattering dominates the mobility at low 7 and
phonon scattering at high 7' with a peak in mobility in between
QCMP Lent/Easter 2021 14.11



Electron mobility versus
temperature

Top figure shows electron mobility of 5
samples of GaN with different doping
levels and carrier concentrations

For high temperature variation close to
expected ¢ oc T~ due to phonon
scattering

At low temperature drop off slower than
expected g oc T 2 for impurity scattering
— measurements at lower temperatures
may reach this dependence

Lower figure shows highest mobility
sample of GaAs ever reported

At high T close to predicted variation for
phonon scattering

At low T faster drop off than expected —
possibly due to metal-insulator transition

C R Stanley et al Appl Phys
QCMP Lent/Easter 2021 Lett 58, 478 (1991)

D Steigerwald et al, JOM 49, 18 (1997)
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Hall effect with two carrier types
Earlier in the course we studied the Hall effect for a single carrier type

Assuming dj/dt =—j/t +(ne2 /m)(E + V><B)
in the steady state - for electrons
J, = (nezre /me)(E +v,xB)=neu, (E+v,xB)
If both electrons and holes are present we have
j= ne,ue(E+Ve xB)+pe,uh (E+Vh xB)
Assume current is flowing in the x-direction, current in the y-direction is zero,
B is in the z-direction, v_,, v , are opposite signs and u =v /| E

J.=eE (nu,+pu,), 0=eE (nu,+pu,)—eB(nuy, +puy,)
= 0=eE, (ny, + pp,)+eBE (nu; — pu;)

Eliminating £_we get

5 o__ 2B —puy) E,  (nu;—pu,)
Y

—=> R, =——= >
e(nu, + p,) JB e(nu,+pu,)
A minority carrier can determine the Hall coefficient sign if the mobility is
high enough — e.g. GaAs has 1, = 8800cm?V s, U, = 400cm?’V s
at room temperature so electrons are likely to dominate
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Hall effect with electrons and holes
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Diagrams show Hall coefficient R, in InSb plotted
as a function of 7'

Upper diagram - InSb is doped with donors, lower
diagram doped with acceptors s

Ratio of mobilities g, / 1, ~100

At high T InSb is in the intrinsic regime, electrons
dominate R, and the slope of the Hall coefficient =~ 1=
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N
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lue of 0.24eV T T T3
valu y — InSb doped with acceptors
At low T in the upper diagram, no intrinsic carriers - .

R, = —-L remains negative giving an electron

ne

concentrationn =1.1x10"%cm™

In the lower diagram as the temperature is
lowered the intrinsic electrons freeze out they no
longer dominate R, and R, changes sign

In the extrinsic region R, is positive indicating
holes R, =—-= p= 2x10"°cm™
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Summary of Lecture 14

Intrinsic semiconductors, law of mass action

Doping in semiconductors

Variation of carrier concentration with temperature, impurity ionisation
Electrical conductivity, impurity and phonon scattering

Electron mobility versus temperature

Hall effect with two carrier types — example InSb

QCMP Lent/Easter 2021 14.15



Quantum Condensed Matter Physics
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Quantum Condensed Matter Physics
Lecture 15

David Ritchie
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Quantum Condensed Matter Physics

1. Classical and Semi-classical models for electrons in solids (3L)
2. Electrons and phonons in periodic solids (6L)

3. Experimental probes of band structure (4L)

4. Semiconductors and semiconductor devices (5L)

Intrinsic semiconductors, law of mass action, doping in semiconductors,
impurity ionisation, variation of carrier concentration and mobility with
temperature - impurity and phonon scattering, Hall effect with two
carrier types.

Metal to semiconductor contact. P-n junction; charge redistribution,
band bending and equilibrium, balance of currents, voltage bias. Light
emitting diodes; GaN, organic.

Photovoltaic solar cell; Shockley-Queisser limit, efficiencies.......

5. Electronic instabilities (2L)
6. Fermi Liquids (2L)
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Semiconductor devices

We consider the general properties of surfaces and interfaces between
materials with applications to semiconductor devices

We use the semiclassical approximation, treating electrons as classical
particles with Hamiltonian H = E (k) —e@(r), momentum p =7k and a
spatially varying potential ¢(r)

The potential arises from external applied fields, charges induced by doping
and changes in the material composition

When discussing narrow quantum wells we will need to modify this
approximation to quantise the energy levels

For an isolated solid in equilibrium the energy difference between the
chemical potential, 1z and the vacuum level is the work function @ - the
energy required to remove an electron from the Fermi level and place it in a
state of zero kinetic energy in free space

2 different isolated materials with different @ will have different u

When placed in contact their chemical potentials must equalise. Electrons
flow to charge the more electronegative material, its potential changes and
an overall balance will be established

In general there will be internal inhomogeneous electric fields
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Metal to semiconductor contact

Consider this process for ideal metal
in contact with a semiconductor

. . ()

(a) metal and semiconductor not in $q>m . ¢ : E.
contact — in equilibrium with vacuum

level. n-type semiconductor, i close Metal —
to conduction band edge semiconductor

(b) In contact, electrons transferred b) Vacuum level
from semiconductor to metal i @ 'l:
@, v E,

(a) Vacuum level

producing electric potential @(x)
which eventually equilibrates so t is
a constant over whole system, Metal n-doped
combined function 1+ ¢(x)called semiconductor
electrochemical potential

(c) energy level diagram relative to
constant chemical potential. 1
Semiconductor band bends upwards, E. - e4(x)
donor levels emptied of electrons
leaving +ve charged depletion region
and Schottky barrier @,
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Metal to semiconductor contact
Barrier set up between metal and semiconductor inhibits current flow.

An electron must either tunnel through barrier (at low T) or be thermally

excited over it (thermionic emission)

When a large enough bias is applied junction may act as a rectifier, (with a
bias applied u is different for the metal and semiconductor)

Upper diagram, applying a +ve voltage to
the metal relative to the semiconductor
lowers the barrier for electrons to enter the
metal. Can eventually tip the electron bands
so much that the barrier disappears

Current grows rapidly as +ve bias increases

Middle diagram, if the metal bias is at a
negative voltage relative to the
semiconductor the depleted region grows in
width and current remains small

Lowest diagram shows |V characteristic of
Silicon-tungsten diode for high frequency
(mm wave) rectification

QCMP Lent/Easter 2021

in

Positive bias

E.- ed(x)
i

0, ) ==

B TEV-GIP(X)

Negative bias

. o
—1 ] 41 t 2
Voltage

15.5




p-n junction — charge redistribution
* A p-njunction is formed by P P
inhomogeneous doping when a £ £
layer of n-type material is placed
next to p-type material

* Inside n-type i just below bottom of
conduction band

* Inside p-type K, just above top of
valence band

« Joining p-n gives step in i

» Current flows because of different

chemical potentials, electrons from
n-side fill holes on p-side

 No mobile charges left in depletion |4, ™}
region around junction — a thickness

conduction band

ptype  E n-type

conduction band

"~
charge flow M,
across interface

valence band

Ny

of between 10nm and 1um eN,
. w
* lonised donors have +ve charge on —  <# .
. . . w
n-side, ionised acceptors have —ve _e”N gpproximate
charge on p-side e charge distributions

depletion region
» Charge neutrality = N, w, = N,w,
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p-n junction — band bending

Poisson’s law — charge redistribution 5 -type
causes electrostatic potential é
caused by

Energy levels shift £ — E —e@(z) 5l ey
Far away from junction in n-type u is 'y °
close to top of bandgap and in p-type E —eg

it is close to bottom of band gap

Charge flows until energy levels have .  sorduEtian Band
moved enough for ¢ to line up across |[=afsssy 7=~ - .
junction and equilibrium is reached Bl
Junction potential e¢p, = u, —u, = E,
Charge neutrality and Poisson’s

. . . 1/2
.equa.tlon lead tp expressions relating 2¢, 5¢j N N,
junction potential, ¢j thicknesses of n- N

e N,+N,

| , (@) Wipn) =
and p-type depletion regions w , w,
and doping densities of n- and p-type
regions N,, N .
26060, N, + N, j

7= 26,& e NN,
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p-n junction in equilibrium

Top: 2 ways of representing energy Ievels in @ —

a p-n junction (a) includes electrostatic [ N

potential in the electrochemical potential JE— —x
p-doped

(b) chemical potential constant and potential
shifts energy levels

When the donor or acceptor levels pass Ba- eolx
through 1 levels are ionised and annihilate

— impurity levels now charged (a) AT AT N,
Bottom: (a) carrier and (b) charge densities [N . _Depletipn_,, electrons
near the depletion region of a p-n junction layer —
When T is low the carrier density changes A

abruptly at the point where u passes (b) eng

through the donor or acceptor level & H(x)
Close to the barrier the carriers are depleted y

— the system is physically charged / eN,

Charge density of +eN ,on the n-type side and —eN _on the p-type side
This dipole layer produces a potential @(x) shown in (b)
Potential self consistently determines charge flow and depletion region width
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p-n junction in equilibrium - summary

Overview of p-n junction in
equilibrium

Mismatch in 1z causes charge
transfer across junction building
contact potential, resulting in band
bending until &z equal on both sides

Electrons from n-side cross junction
annihilating holes causing carrier
free depletion region

Charge transfer results in space
charge, maximum charge density
given by dopant concentration

Space charge causes in-built
junction field £ ; and contact
potential ¢ which builds until charge
transfer stops
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band scheme

p
(acceptor-doped)

minority electrons

n

(donor doped)

~ majority electrons

(energy levels) _® _
conduction band - :
valence band
X %% ! !
®
majority holes minority holes
carrier N, (acceptor dens‘::ity) V\Id (donor density)
density ) |
-
epletion
layer
charge { eV,
density
_eNa ...............
electric
field
Ej.
electrostatic / o
potential E/= !
junction
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p-n junction — balance of currents

Majority holes diffuse from p to n-
side, recombine with electrons

Hole recombination o(g f(j;{;f'%Sion
(h) _ g(h) —ep;/{kp
current.,.]rec _JO e oC
probability that holes climb the
potential barrier, Jéh)constant

Electrons do the same in the
opposite direction. Currents add

Small no of minority holes
(np =n’) thermally generated
on n- S|de drift to p-side under
influence of in-built field.

Resulting hole drift or generation
current Jg’i depends on T, details
of band structure and doping

Electrons do same in opposite
direction. Currents add

Equilibrium: J(h) =JW

rec

~J =0

gen
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hole
concentration

L

maijority minority
electric iqﬂJ
potential
o g
resulting diffusion rec
(or recombination) ——--

current hole maijority carriers diffuse against
potential barrier in forward
direction (from p to n) and
recombine on other side of junction
D I
hole

concentration

L

electric

minority

field

resulting drift
(or generation)
current

majority
W

_ J(h)
: : 2 gen
hole minority carriers
appearing (generated)
in junction are swept
in reverse direction by
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p-n junction — voltage biased
Bias voltage (+ve on p-side) modifies effective junction potential ¢]eﬁ = ¢j -V
This changes the recombination current (barrier height changes) but leaves

generation current unchanged — minority carrier density on both sides
remains the same

Forward bias J}fehc) = J;Zzeew “! recombination current outstrips generation
current exponentially giving diode action (at zero bias J,fehc) = Jg;?l )

Hence J(h) — J(h) _ J(h) — J(h)eeV/kBT _ J(h) — J(h) (eeV/k